日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
精英家教網已知四棱錐P-ABCD的三視圖如右圖.該棱錐中,PA=AB=1,PD與平面ABCD所成角是30°,點F是PB的中點,點E在棱BC上移動.
(I)畫出該棱錐的直觀圖并證明:無論點E在棱BC的何處,總有PE⊥AF;
(II)當BE等于何值時,二面角P-DE-A的大小為45°.
分析:(I)由題意,根據三視圖作出其對應的直觀圖,再由點E在棱BC滿足PE⊥AF,利用線面垂直證明線線垂直即可確定點E的位置;
(II)二面角P-DE-A的大小為45°是一個方程,本題用向量法做,先建立起分別以AB、AD、AP為坐標軸建立空間直角坐標系,計算出各點的坐標,求出兩個平面的法向量,用向量表示出二面角,再由二面角為45°建立方程求出參數的值,即可得BE
解答:精英家教網解:(I)直觀圖如下(AF,PE不必作出)
在四棱錐P-ABCD中,由題知:PA⊥面ABCD,四邊形ABCD是矩形,所以∠PDA是PD與底面ABCD所成角,從而∠PDA=30°,
又∵BC⊥AB,BC⊥PA,AB與PA相交于點A.
∴BC⊥面PAB,
∴BC⊥AF,
∵PA=AB=1,F是PB的中點,
∴AF⊥面PBC,又BP∩BC=B,PE?平面PBC
所以PE⊥AF
(II)分別以AB、AD、AP為坐標軸建立空間直角坐標系,則有P(0,0,1),B(1,0,0),C(1,
3
,0),D(0,
3
,0),F(
1
2
,0,
1
2

設E(1,t,0),其中t∈[0,
3
),則
DE
=(1,t-
3
,0)
,向量
AP
=(0,0,1)是平面ABCD的一個法向量,
n 
=(x,y,z)
是平面PED的一個法向量,則有
n
PD
=0
n
DE
=0
3
y-z=0
x+ty-
3y
=0

令z=
3
,得y=1,x=
3
-t,所以
n
=(
3
-t,1,
3
)
,從而有|
n
| =
t2-2
3
t+7

n
AP
=
3
,由
2
2
=|
n
AP
|n
|•|
AP
|
|得
t2-2
3
t+7
6
,解得t=
3
-
2
(t=
3
+
2
舍)
故當t=
3
-
2
時,二面角P-DE-A的大小為45°
點評:本題考查二面角的平面角及求法,解題的關鍵是建立空間坐標系,利用向量法求證線面垂直,線面平行,以及求面面夾角,利用空間向量求解立體幾何中的線面,面面位置關系及求線面角,二面角,是空間向量的重要應用,引入空間向量,大大降低了求解立體幾何問題時的問題時的推理難度,使得思考變得容易,但此法也有不足,從解題過程可以看出,用空間向量法解立體幾何問題,運算量不小,計算時要嚴謹,莫因運算出錯導致解題失敗.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

精英家教網如圖,已知四棱錐P--ABC的底面ABCD為正方形,PA⊥平面ABCD,PA=AB=2,e為PC的中點,F為AD的中點.
(Ⅰ)證明EF∥平面PAB;
(Ⅱ)證明EF⊥平面PBC;
(III)點M是四邊形ABCD內的一動點,PM與平面ABCD所成的角始終為45°,求動直線PM所形成的曲面與平面ABCD、平面PAB、平面PAD所圍成幾何體的體積.

查看答案和解析>>

科目:高中數學 來源: 題型:

精英家教網如圖,已知四棱錐P-ABCD的底面是直角梯形,∠ABC=∠BCD=90°,AB=BC=2CD=2,PB=PC,側面PBC⊥底面ABCD,O是BC的中點.
(1)求證:PO⊥平面ABCD;
(2)求證:PA⊥BD
(3)若二面角D-PA-O的余弦值為
10
5
,求PB的長.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知四棱錐P-ABCD的底面是直角梯形,∠ABC=∠BCD=90°,E為BC中點,AE與BD交于O點,AB=BC=2CD=2,BD⊥PE.
(1)求證:平面PAE⊥平面ABCD; 
(2)若直線PA與平面ABCD所成角的正切值為
5
2
,PO=2,求四棱錐P-ABCD的體積.

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,已知四棱錐P-ABCD中,PA⊥平面ABCD,底面ABCD是直角梯形,∠DAB=∠ABC=90°,E是線段PC上一點,PC⊥平面BDE.
(Ⅰ)求證:BD⊥平面PAB.
(Ⅱ)若PA=4,AB=2,BC=1,求直線AC與平面PCD所成角的正弦值.

查看答案和解析>>

科目:高中數學 來源:2010-2011學年山東省濟寧一中高三(上)期末數學試卷(理科)(解析版) 題型:解答題

如圖,已知四棱錐P--ABC的底面ABCD為正方形,PA⊥平面ABCD,PA=AB=2,e為PC的中點,F為AD的中點.
(Ⅰ)證明EF∥平面PAB;
(Ⅱ)證明EF⊥平面PBC;
(III)點M是四邊形ABCD內的一動點,PM與平面ABCD所成的角始終為45°,求動直線PM所形成的曲面與平面ABCD、平面PAB、平面PAD所圍成幾何體的體積.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 久久精品国产亚洲一区二区三区 | av电影一区二区 | 久久精选视频 | 久久影院国产 | 免费毛片a线观看 | 久国久产久精永久网页 | 激情开心成人网 | 一级视频在线免费观看 | 日日草天天干 | h免费在线| 五月婷婷免费视频 | 久久人人爽av | 在线涩涩 | 久久精品国产清自在天天线 | 国产精品一区二区精品 | 亚洲精品乱码久久久久久国产主播 | 久久成人综合 | 国产高清精品一区二区三区 | 日韩av电影观看 | 精品成人国产 | 成人精品在线视频 | 99久久婷婷国产精品综合 | www.99re| 99国产精品久久 | 亚洲精品91 | 中文字幕久久久 | 欧美亚洲一区 | 国产一级免费视频 | 免费看国产一级特黄aaaa大片 | 欧美xxxⅹ性欧美大片 | 国产精品久久久久久久久久久久久久 | 日本一区二区在线视频 | 国产精品久久久久久久久久久久久久久久 | 成人精品| 三级网址日本 | www.99久| 亚洲午夜精品久久久久久app | 一级做a毛片| 91麻豆精品国产91久久久久久 | 精品不卡| 国产精品视频免费 |