日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
在平面直角坐標系xOy中,已知對于任意實數k,直線恒過定點F.設橢圓C的中心在原點,一個焦點為F,且橢圓C上的點到F的最大距離為
(1)求橢圓C的方程;
(2)設(m,n)是橢圓C上的任意一點,圓O:x2+y2=r2(r>0)與橢圓C有4個相異公共點,試分別判斷圓O與直線l1:mx+ny=1和l2:mx+ny=4的位置關系.
【答案】分析:(1)先將轉化為進而可求得F的坐標得到c的值,再由a+c=可求出a的值,進而可得b的值,確定橢圓方程.
(2)先根據x2+y2=r2(r>0)與橢圓C有4個相異公共點確定r的范圍,再由(m,n)在橢圓C上可得到和m的范圍,圓心O到直線l1的距離和圓心O到直線l2的距離可判斷直線l1與l2與圓O的關系.
解答:解:(1)

設橢圓C的長軸長、短軸長、焦距分別為2a,2b,2c,
則由題設,知于是a=2,b2=1.
所以橢圓C的方程為
(2)因為圓O:x2+y2=r2(r>0)與橢圓C有4個相異公共點,
所以b<r<a,即1<r<2.
因為點(m,n)是橢圓上的點,
所以
所以
于是圓心O到直線l1的距離
圓心O到直線l2的距離
故直線l1與圓O相交,直線l2與圓O相離.
點評:本題主要考查橢圓的基本性質和直線與圓的位置關系.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

在平面直角坐標系xoy中,已知圓心在直線y=x+4上,半徑為2
2
的圓C經過坐標原點O,橢圓
x2
a2
+
y2
9
=1(a>0)
與圓C的一個交點到橢圓兩焦點的距離之和為10.
(1)求圓C的方程;
(2)若F為橢圓的右焦點,點P在圓C上,且滿足PF=4,求點P的坐標.

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,在平面直角坐標系xOy中,銳角α和鈍角β的終邊分別與單位圓交于A,B兩點.若點A的橫坐標是
3
5
,點B的縱坐標是
12
13
,則sin(α+β)的值是
16
65
16
65

查看答案和解析>>

科目:高中數學 來源: 題型:

在平面直角坐標系xOy中,若焦點在x軸的橢圓
x2
m
+
y2
3
=1
的離心率為
1
2
,則m的值為
4
4

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•泰州三模)選修4-4:坐標系與參數方程
在平面直角坐標系xOy中,已知A(0,1),B(0,-1),C(t,0),D(
3t
,0)
,其中t≠0.設直線AC與BD的交點為P,求動點P的軌跡的參數方程(以t為參數)及普通方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•東莞一模)在平面直角坐標系xOy中,已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的左焦點為F1(-1,0),且橢圓C的離心率e=
1
2

(1)求橢圓C的方程;
(2)設橢圓C的上下頂點分別為A1,A2,Q是橢圓C上異于A1,A2的任一點,直線QA1,QA2分別交x軸于點S,T,證明:|OS|•|OT|為定值,并求出該定值;
(3)在橢圓C上,是否存在點M(m,n),使得直線l:mx+ny=2與圓O:x2+y2=
16
7
相交于不同的兩點A、B,且△OAB的面積最大?若存在,求出點M的坐標及對應的△OAB的面積;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 天天干com | 日本色视频 | 日韩久久一区 | 国产电影一区二区在线观看 | 在线观看国产wwwa级羞羞视频 | 亚洲午夜精品a | 成人精品一二三区 | 99精彩视频 | 亚洲国产精品久久久久秋霞蜜臀 | 欧美日韩在线一区二区 | www.毛片| 成人欧美一区二区三区黑人孕妇 | 越南一级毛片免费 | 成人在线免费 | 欧美日韩在线精品 | 黄色毛片免费看 | 久操视频免费 | 欧美日韩三级 | 日韩综合网 | 在线国产一区 | 久久久99精品免费观看 | 久久电影中文字幕 | 在线播放一区二区三区 | 91久久精品国产免费一区 | av网站在线免费看 | 欧美大片在线看免费观看 | 亚洲精品视频一区二区三区 | 再深点灬舒服灬太大了添少妇视频 | 日韩不卡 | av在线免费观看网址 | 日韩在线不卡 | 国产免费视频一区二区三区 | 欧美视频在线播放 | 国产精品2区 | 成人不卡视频 | 精品国产一区二区三区av小说 | 日日操天天操 | 偷拍亚洲精品 | 国产成人av一区二区三区 | 久久免费视频观看 | 极品美女一线天 |