【題目】已知函數 .
(1)討論函數的單調性;
(2)當時,證明:對任意的
,有
.
【答案】(1)答案見解析;(2)證明見解析.
【解析】試題分析:
(1)由題意結合導函數的解析式分類討論有:
當時,
在
上單調遞增,在
上單調遞減;
當時,
在
上單調遞增,在
上單調遞減;
當時,
在
上單調遞增;
當時,
在
和
上單調遞增,在
上單調遞減;
(2)原問題等價于在
上恒成立,構造函數
,據此可得
,則
恒成立.
試題解析:
(1)由題意得,
當時,由
得
且
,
則
①當時,
在
上單調遞增,在
上單調遞減;
②當時,
在
上單調遞增,在
上單調遞減;
③當時,
在
上單調遞增;
④當時,
在
和
上單調遞增,在
上單調遞減;
(2)當時,要證
在
上恒成立,
只需證在
上恒成立,
令,
因為,
易得在
上單調遞增,在
上單調遞減,故
,
由得,得
,
當時,
;當
時,
,
所以,
又,所以
,即
,
所以在
上恒成立,
故當時,對任意的
,
恒成立.
科目:高中數學 來源: 題型:
【題目】如圖,在三棱錐D﹣ABC中,已知△BCD是正三角形,AB⊥平面BCD,AB=BC=a,E為BC點,F棱AC上,且AF=3FC.
(1)求三棱錐D﹣ABC的體積;
(2)求證:AC⊥平面DEF;
(3)若M為DB中點,N在棱AC上,且CN= CA,求證:MN∥平面DEF.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,在直角梯形ABCD中,AB∥CD,∠BCD=90°,BC=CD=2,AF=BF,EC∥FD,FD⊥底面ABCD,M是AB的中點.
(1)求證:平面CFM⊥平面BDF;
(2)點N在CE上,EC=2,FD=3,當CN為何值時,MN∥平面BEF.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,四棱錐P﹣ABCD的底面ABCD是邊長為1的菱形,∠BCD=60°,E是CD的中點,PA⊥底面ABCD,PA=2. (Ⅰ)證明:平面PBE⊥平面PAB;
(Ⅱ)求二面角B﹣PE﹣D的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在四棱錐P﹣ABCD中,△ABC為正三角形,AB⊥AD,AC⊥CD,PA⊥平面ABCD,PC與平面ABCD所成角為45°
(1)若E為PC的中點,求證:PD⊥平面ABE;
(2)若CD= ,求點B到平面PCD的距離.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若圓C1:(x﹣1)2+(y+3)2=1與圓C2:(x﹣a)2+(y﹣b)2=1外離,過直線l:x﹣y﹣1=0上任意一點P分別做圓C1 , C2的切線,切點分別為M,N,且均保持|PM|=|PN|,則a+b=( )
A.﹣2
B.﹣1
C.1
D.2
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某地區有小學21所,中學14所,大學7所,現采用分層抽樣的方法從這些學校中抽取6所學校對學生進行視力調查.
(1)求應從小學、中學、大學中分別抽取的學校數目;
(2)若從抽取的6所學校中隨機抽取2所學校做進一步數據分析. (ⅰ)列出所有可能的抽取結果;
(ⅱ)求抽取的2所學校均為小學的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在正方體ABCD﹣A1B1C1D1中,點O為線段BD的中點,設點P在線段CC1上,直線OP與平面A1BD所成的角為α,則sinα的取值范圍是( )
A.[ ,1]
B.[ ,1]
C.[ ,
]
D.[ ,1]
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,AB是圓O的直徑,PA垂直圓所在的平面,C是圓上的點.
(I)求證:平面PAC⊥平面PBC;
(II)若AC=1,PA=1,求圓心O到平面PBC的距離.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com