已知橢圓拋物線
的焦點均在
軸上,
的中心和
的頂點均為坐標原點
從每條曲線上取兩個點,將其坐標記錄于下表中:
![]() | ![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() | ![]() |
(Ⅰ)和
在拋物線
上,
和
在橢圓
上;(Ⅱ)
的標準方程分別為
.
解析試題分析:(Ⅰ)已知橢圓拋物線
的焦點均在
軸上,
的中心和
的頂點均為坐標原點
,可設拋物線
的方程為
,從每條曲線上取兩個點,將其坐標記錄于表中,要找出這兩點,只需將這四個點都代入拋物線
的方程,求出的
值相同兩點在拋物線
上,另外兩點在橢圓上;(Ⅱ)求
的標準方程,由(Ⅰ)的判斷就求出拋物線
的方程,只需求橢圓的方程,由于橢圓為標準位置,且過
,故
,只需求出
,又因為橢圓過
,代入橢圓的方程可求出
,從而得橢圓的方程.
試題解析:(Ⅰ)和
代入拋物線方程中得到的解相同,
和
在拋物線
上,
和
在橢圓
上. 4分
(Ⅱ)設的標準方程分別為:
將和
代入拋物線方程中得到的解相同,
7分
和
在橢圓上,代入橢圓方程得
10分
故的標準方程分別為
12分
考點:橢圓的方程,拋物線的方程.
科目:高中數學 來源: 題型:解答題
(1)已知定點、
,動點N滿足
(O為坐標原點),
,
,
,求點P的軌跡方程.
(2)如圖,已知橢圓的上、下頂點分別為
,點
在橢圓上,且異于點
,直線
與直線
分別交于點
,
(ⅰ)設直線的斜率分別為
、
,求證:
為定值;
(ⅱ)當點運動時,以
為直徑的圓是否經過定點?請證明你的結論.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,在平面直角坐標系中,已知橢圓
經過點
,橢圓的離心率
.
(1)求橢圓的方程;
(2)過點作兩直線與橢圓
分別交于相異兩點
、
.若
的平分線與
軸平行, 試探究直線
的斜率是否為定值?若是, 請給予證明;若不是, 請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知圓直線
與圓
相切,且交橢圓
于
兩點,
是橢圓的半焦距,
,
(Ⅰ)求的值;
(Ⅱ)O為坐標原點,若求橢圓
的方程;
(Ⅲ) 在(Ⅱ)的條件下,設橢圓的左右頂點分別為A,B,動點
,直線AS,BS與直線
分別交于M,N兩點,求線段MN的長度的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,斜率為的直線過拋物線
的焦點,與拋物線交于兩點A、B, M為拋物線弧AB上的動點.
(Ⅰ).若,求拋物線的方程;
(Ⅱ).求△ABM面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
設拋物線的焦點為
,準線為
,
,以
為圓心的圓
與
相切于點
,
的縱坐標為
,
是圓
與
軸除
外的另一個交點.
(I)求拋物線與圓
的方程;
( II)已知直線,
與
交于
兩點,
與
交于點
,且
, 求
的面積.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知平面內一動點P到點F(1,0)的距離與點P到y軸的距離的差等于1.
(Ⅰ)求動點P的軌跡C的方程;
(Ⅱ)過點F作兩條斜率存在且互相垂直的直線l1,l2,設l1與軌跡C相交于點A,B,l2與軌跡C相交于點D,E,求的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓的離心率為
,直線
與以原點為圓心、橢圓
的短半軸長為半徑的圓
相切.
(1)求橢圓的方程;
(2)如圖,、
、
是橢圓
的頂點,
是橢圓
上除頂點外的任意點,直線
交
軸于點
,直線
交
于點
,設
的斜率為
,
的斜率為
,求證:
為定值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓的離心率為
,直線
與以原點為圓心、以橢圓
的短半軸長為半徑的圓
相切.
(1)求橢圓的方程;
(2)設橢圓的左焦點為
,右焦點為
,直線
過點
,且垂直于橢圓的長軸,動直線
垂直于
,垂足為點
,線段
的垂直平分線交
于點
,求點
的軌跡
的方程;
(3)設與
軸交于點
,不同的兩點
在
上(
與
也不重合),且滿足
,求
的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com