【題目】已知函數(shù).
(I)若,求曲線
在點
處的切線
的方程;
(II)設函數(shù)有兩個極值點
,其中
,求
的最小值.
【答案】(I);(II)
.
【解析】試題分析:(I)求出,可得切線斜率
,再根據(jù)點斜式可得切線方程;(II)
得
,其兩根為
,且
,從而
,利用導師研究其單調性,進而可得結果.
試題解析:(I)當時,
,
得切線的方程為
即
.
(II),定義域為
.
,令
得
,其兩根為
,
且.所以,
.
,
.
則,
,
當時,恒有
時,恒有
,
總之當時,
在
上單調遞減,所以
,
.
【方法點晴】本題主要考查利用導數(shù)求曲線切線以及利用導數(shù)研究函數(shù)的單調性,屬于難題.求曲線切線方程的一般步驟是:(1)求出在
處的導數(shù),即
在點
出的切線斜率(當曲線
在
處的切線與
軸平行時,在 處導數(shù)不存在,切線方程為
);(2)由點斜式求得切線方程
.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),
.
(1)當時,求函數(shù)
的單調區(qū)間;
(2)設函數(shù),
.若函數(shù)
的最小值是
,求
的值;
(3)若函數(shù),
的定義域都是
,對于函數(shù)
的圖象上的任意一點
,在函數(shù)
的圖象上都存在一點
,使得
,其中
是自然對數(shù)的底數(shù),
為坐標原點,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】寫出下列命題的否定,并判斷其真假:
(1)p:末位數(shù)字為9的整數(shù)能被3整除;
(2)p:有的素數(shù)是偶數(shù);
(3)p:至少有一個實數(shù)x,使x2+1=0;
(4)p:x,y∈R,x2+y2+2x-4y+5=0.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在△ABC中,a,b,c分別為內角A、B、C的對邊,且2asinA=(2b﹣c)sinB+(2c﹣b)sinC.
(1)求角A的大小;
(2)若sinB+sinC= ,試判斷△ABC的形狀.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知{an}是等差數(shù)列,{bn}是等比數(shù)列,Sn為數(shù)列{an}的前n項和,a1=b1=1,且b3S3=36,b2S2=8(n∈N*).
(1)求數(shù)列{an}和{bn}的通項公式;
(2)若an<an+1 , 求數(shù)列{anbn}的前n項和Tn .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓心為C的圓:(x﹣a)2+(y﹣b)2=8(a,b為正整數(shù))過點A(0,1),且與直線y﹣3﹣2 =0相切.
(1)求圓C的方程;
(2)若過點M(4,﹣1)的直線l與圓C相交于E,F(xiàn)兩點,且 =0.求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了響應教育部頒布的《關于推進中小學生研學旅行的意見》,某校計劃開設八門研學旅行課程,并對全校學生的選課意向進行調查(調查要求全員參與,每個學生必須從八門課程中選出唯一一門課程).本次調查結果如下.
圖中,課程為人文類課程,課程
為自然科學類課程.為進一步研究學生選課意向,結合上面圖表,采取分層抽樣方法從全校抽取1%的學生作為研究樣本組(以下簡稱“組
”).
(Ⅰ)在“組”中,選擇人文類課程和自然科學類課程的人數(shù)各有多少?
(Ⅱ)某地舉辦自然科學營活動,學校要求:參加活動的學生只能是“組”中選擇
課
程或課程的同學,并且這些同學以自愿報名繳費的方式參加活動. 選擇
課程的學生中有
人參加科學營活動,每人需繳納
元,選擇
課程的學生中有
人參加該活動,每人需繳納
元.記選擇
課程和
課程的學生自愿報名人數(shù)的情況為
,參加活動的學生繳納費用總和為
元.
①當時,寫出
的所有可能取值;
②若選擇課程的同學都參加科學營活動,求
元的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com