如圖,橢圓 (a>b>0)的上、下頂點分別為A、B,已知點B在直線l:
上,且橢圓的離心率e =
.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)P是橢圓上異于A、B的任意一點,PQ⊥y軸,Q為垂足,M為線段PQ中點,直線AM交直線l于點C,N為線段BC的中點,求證:OM⊥MN.
(1);(2)詳見解析.
解析試題分析:(1)根據(jù)橢圓的性質(zhì),建立方程,即可求得;(2)可以設(shè)點P坐標(biāo),然后用點P的坐標(biāo)表示M、N的坐標(biāo),進(jìn)而可以表示、
,然后說明
即可.
試題解析:(1)依題意,得. ∵
,
,∴
.
∴橢圓的標(biāo)準(zhǔn)方程為
(2)證明:設(shè),
,則
,且
.∵
為線段
中點, ∴
. 又
,∴直線
的方程為
.
令
,得
. 又
,
為線段
的中點,∴
.
當(dāng)時,
,
此時,
∴,
不存在,∴
.
當(dāng)時,
,
,
∵,∴
綜上得.
考點:(1)橢圓的標(biāo)準(zhǔn)方程;(2)兩條直線垂直的條件.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓C:(a>b>0),過點(0,1),且離心率為
.
(1)求橢圓C的方程;
(2)A,B為橢圓C的左右頂點,直線l:x=2與x軸交于點D,點P是橢圓C上異于A,B的動點,直線AP,BP分別交直線l于E,F(xiàn)兩點.證明:當(dāng)點P在橢圓C上運(yùn)動時,
恒為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系xOy中,設(shè)曲線C1:所圍成的封閉圖形的面積為
,曲線C1上的點到原點O的最短距離為
.以曲線C1與坐標(biāo)軸的交點為頂點的橢圓記為C2.
(1)求橢圓C2的標(biāo)準(zhǔn)方程;
(2)設(shè)AB是過橢圓C2中心O的任意弦,l是線段AB的垂直平分線.M是l上的點(與O不重合).
①若MO=2OA,當(dāng)點A在橢圓C2上運(yùn)動時,求點M的軌跡方程;
②若M是l與橢圓C2的交點,求△AMB的面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,橢圓C:的左頂點為A,M是橢圓C上異于點A的任意一點,點P與點A關(guān)于點M對稱.
(1)若點P的坐標(biāo),求m的值;
(2)若橢圓C上存在點M,使得,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)橢圓的左、右焦點分別
、
,點
是橢圓短軸的一個端點,且焦距為6,
的周長為16.
(I)求橢圓的方程;
(2)求過點且斜率為
的直線
被橢圓
所截的線段的中點坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓:
的離心率為
,右焦點為(
,0).
(1)求橢圓的方程;
(2)若過原點作兩條互相垂直的射線,與橢圓交于
,
兩點,求證:點
到直線
的距離為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知圓
,若橢圓
的右頂點為圓
的圓心,離心率為
.
(1)求橢圓C的方程;
(2)若存在直線,使得直線
與橢圓
分別交于
兩點,與圓
分別交于
兩點,點
在線段
上,且
,求圓
的半徑
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
橢圓以雙曲線
的實軸為短軸、虛軸為長軸,且與拋物線
交于
兩點.
(1)求橢圓的方程及線段
的長;
(2)在與
圖像的公共區(qū)域內(nèi),是否存在一點
,使得
的弦
與
的弦
相互垂直平分于點
?若存在,求點
坐標(biāo),若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
拋物線y2=2px的準(zhǔn)線方程為x=-2,該拋物線上的每個點到準(zhǔn)線x=-2的距離都與到定點N的距離相等,圓N是以N為圓心,同時與直線l1:y=x和l2:y=-x相切的圓,
(1)求定點N的坐標(biāo);
(2)是否存在一條直線l同時滿足下列條件:
①l分別與直線l1和l2交于A、B兩點,且AB中點為E(4,1);
②l被圓N截得的弦長為2.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com