【題目】通過隨機詢問200名性別不同的大學生是否愛好踢毽子運動,計算得到統(tǒng)計量的觀測值
,參照附表,得到的正確結論是( )
0.10 | 0.05 | 0.025 | |
2.706 | 3.841 | 5.024 |
A.有97.5%以上的把握認為“愛好該項運動與性別有關”
B.有97.5%以上的把握認為“愛好該項運動與性別無關”
C.在犯錯誤的概率不超過5%的前提下,認為“愛好該項運動與性別有關”
D.在犯錯誤的概率不超過5%的前提下,認為“愛好該項運動與性別無關”
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線:
的焦點為
,拋物線
上的點到準線的最小距離為2.
(1)求拋物線的方程;
(2)若過點作互相垂直的兩條直線
,
,
與拋物線
交于
,
兩點,
與拋物線
交于
,
兩點,
,
分別為弦
,
的中點,求
的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知定義域為的單調(diào)函數(shù)
是奇函數(shù),當
時,
.
(1)求的解析式.
(2)若對任意的,不等式
恒成立,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知梯形中,
,
,
,四邊形
為矩形,
,平面
平面
.
(1)求證:平面
;
(2)求平面與平面
所成二面角的正弦值;
(3)若點在線段
上,且直線
與平面
所成角的正弦值為
,求線段
的長.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某工廠共有名工人,已知這
名工人去年完成的產(chǎn)品數(shù)都在區(qū)間
(單位:萬件)內(nèi),其中每年完成
萬件及以上的工人為優(yōu)秀員工,現(xiàn)將其分成
組,第
組、第
組、第
組、第
組、第
組對應的區(qū)間分別為
,
,
,
,
,并繪制出如圖所示的頻率分布直方圖.
(1)求的值,并求去年優(yōu)秀員工人數(shù);
(2)選取合適的抽樣方法從這名工人中抽取容量為
的樣本,求這
組分別應抽取的人數(shù);
(3)現(xiàn)從(2)中人的樣本中的優(yōu)秀員工中隨機選取
名傳授經(jīng)驗,求選取的
名工人在同一組的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線y2=2px(p>0)上點M(3,m)到焦點F的距離為4.
(Ⅰ)求拋物線方程;
(Ⅱ)點P為準線上任意一點,AB為拋物線上過焦點的任意一條弦,設直線PA,PB,PF的斜率為k1,k2,k3,問是否存在實數(shù)λ,使得k1+k2=λk3恒成立.若存在,請求出λ的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,將曲線向左平移2個單位,再將得到的曲線上的每一個點的橫坐標保持不變,縱坐標縮短為原來的
,得到曲線
,以坐標原點
為極點,
軸的正半軸為極軸,建立極坐標系,
的極坐標方程為
.
(1)求曲線的參數(shù)方程;
(2)直線的參數(shù)方程為
(
為參數(shù)),求曲線
上到直線
的距離最短的點的直角坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知直線的參數(shù)方程為
(t為參數(shù)),以坐標原點為極點,
正半軸為極軸,建立極坐標系,曲線
的極坐標方程是
.
(1)寫出直線的極坐標方程與曲線
的直角坐標方程;
(2)若點是曲線
上的動點,求
到直線
距離的最小值,并求出此時
點坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com