【題目】某服裝廠生產一種服裝,每件服裝的成本為80元,出廠單價為120元.該廠為鼓勵銷售商訂購,決定當一次訂購超過100件時,每多訂購一件,訂購的全部服裝的出廠單價就降低0.04元.根據市場調查,銷售商一次訂購量不會超過600件.
(1)設一次訂購為件服裝的實際出廠單價為
元,寫出函數
的表達式;
(2)當銷售商一次訂購多少件服裝時,該服裝廠獲得的利潤最大?
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,曲線
的參數方程為
(
,
為參數),以坐標原點
為極點,
軸正半軸為極軸建立極坐標系,直線
的極坐標方程為
,若直線
與曲線
相切;
(1)求曲線的極坐標方程;
(2)在曲線上取兩點
,
與原點
構成
,且滿足
,求面積
的最大值.
【答案】(1);(2)
【解析】試題分析:(1)利用極坐標與直角坐標的互化公式可得直線的直角坐標方程為
,
,消去參數可知曲線
是圓心為
,半徑為
的圓,由直線
與曲線
相切,可得:
;則曲線C的方程為
, 再次利用極坐標與直角坐標的互化公式可得
可得曲線C的極坐標方程.
(2)由(1)不妨設M(),
,(
),
,
,
由此可求面積的最大值.
試題解析:(1)由題意可知直線的直角坐標方程為
,
曲線是圓心為
,半徑為
的圓,直線
與曲線
相切,可得:
;可知曲線C的方程為
,
所以曲線C的極坐標方程為,
即.
(2)由(1)不妨設M(),
,(
),
,
,
當 時,
,
所以△MON面積的最大值為.
【題型】解答題
【結束】
23
【題目】已知函數的定義域為
;
(1)求實數的取值范圍;
(2)設實數為
的最大值,若實數
,
,
滿足
,求
的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知橢圓上頂點為A,右焦點為F,直線
與圓
相切,其中
.
(1)求橢圓的方程;
(2)不過點A的動直線l與橢圓C相交于P,Q兩點,且,證明:動直線l過定點,并且求出該定點坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某工廠加工一批零件,加工過程中會產生次品,根據經驗可知,其次品率與日產量
(萬件)之間滿足函數關系式
,已知每生產1萬件合格品可獲利2萬元,但生產1萬件次品將虧損1萬元.(次品率=次品數/生產量).
(1)試寫出加工這批零件的日盈利額(萬元)與日產量
(萬件)的函數;
(2)當日產量為多少時,可獲得最大利潤?最大利潤為多少?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=(c為常數),且f(1)=0.
(1)求c的值;
(2)證明函數f(x)在[0,2]上是單調遞增函數;
(3)已知函數g(x)=f(ex),判斷函數g(x)的奇偶性.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某城市的華為手機專賣店對該市市民使用華為手機的情況進行調查.在使用華為手機的用戶中,隨機抽取100名,按年齡(單位:歲)進行統計的頻率分布直方圖如圖:
(1)根據頻率分布直方圖,分別求出樣本的平均數(同一組數據用該區間的中點值作代表)和中位數的估計值(均精確到個位);
(2)在抽取的這100名市民中,按年齡進行分層抽樣,抽取20人參加華為手機宣傳活動,再從這20人中年齡在和
的人群里,隨機選取2人各贈送一部華為手機,求這2名市民年齡都在
內的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數.
(1)判斷的奇偶性并說明理由;
(2)若,試判斷函數
的單調性,并用定義法證明;
(3)若已知,且函數
在區間[1,+∞)上的最小值為-2,求實數m的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com