
為橢圓上任一點(不是長軸頂點),過點

的切線與過長軸頂點與長軸垂直的直線相交于點

,求證以線段

為直徑的圓過這個橢圓的兩個焦點
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分14分)
設(shè)橢圓

其相應(yīng)于焦點

的準(zhǔn)線方程為

.
(Ⅰ)求橢圓

的方程;
(Ⅱ)已知過點

傾斜角為

的直線交橢圓

于

兩點,求證:

;
(Ⅲ)過點

作兩條互相垂直的直線分別交橢圓

于

和

,求

的最小值
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知焦點在

軸上,中心在坐標(biāo)原點的橢圓C的離心率為

,且過點

(1)求橢圓C的方程;
(2)直線

分別切橢圓C與圓

(其中

)于A.B兩點,求|AB|的最大值。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖,在橢圓

中,F(xiàn)
1,F(xiàn)
2分別為橢圓的左、右焦點,B、D分別
為橢圓的左、右頂點,A為橢圓在第一象限內(nèi)的一點,直線AF
1交橢圓于另
一點C,交y軸于點E,且點F
1、F
2三等分線段BD.
(1)求

的值;
(2)若四邊形EBCF
2為平行四邊形,求點C的坐標(biāo);
(3)當(dāng)

時,求直線AC的方程.

查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題15分)已知橢圓

的右焦點恰好是拋物線

的焦點

,
點

是橢圓

的右頂點.過點

的直線

交拋物線

于

兩點,滿足

,
其中

是坐標(biāo)原點.
(1)求橢圓


的方程;
(2)過橢圓

的左頂點

作

軸平行線

,過點

作

軸平行線

,直線

與

相交于點

.若

是以

為一條腰的等腰三角形,求直線

的方程.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
橢圓

的焦距是2,則
m的值為 ( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題

直角三角形

的直角頂點

為動點,

,

為兩個定點,作

于

,動點

滿足

,當(dāng)點

運動時,設(shè)點

的軌跡為曲線

,曲線

與

軸正半軸的交點為

.
(Ⅰ) 求曲線

的方程;
(Ⅱ) 是否存在方向向量為
m
的直線

,與曲線

交于

,

兩點,且

與

的夾角為

?若存在,求出所有滿足條件的直線方程;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖,已知直線

的右焦點
F,且交橢圓
C于
A,
B兩點,點
A,
F,
B在直線

上的射影依次為點
D,
K,
E.
(1)若拋物線

的焦點為橢圓
C的上頂點,求橢圓
C的方程;
(2)對于(1)中的橢圓
C,若直線
L交
y軸于點
M,且

,當(dāng)
m變化時,求

的值;
(3)連接
AE,
BD,試探索當(dāng)
m變化時,直線
AE、
BD是否相交于一定點
N?若交于定點
N,請求出
N點的坐標(biāo),并給予證明;否則說明理由.

查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
設(shè)

是橢圓

上的點.若

是橢圓的兩個焦點,則

等于( )
查看答案和解析>>