日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情

f(x)=ax2+bx+c,當|x|≤1時,總有|f(x)|≤1,求證:|f(2)|≤8。

答案:
解析:

解:∵當|x|≤1時,總有|f(x)|≤1

∴|f(0)|≤1,即|c|≤1

又2b=f(1)-f(-1)

∴|2b|=|f(1)-f(-1)|≤|f(1)|+|f(-1)|≤2

即|b|≤1。

∵2a=f(1)+f(-1)-2c

∴|2a|=|f(1)+f(-1)-2c|

≤|f(1)|+|f(-1)|+2|c|≤4

即|a|≤2

∴|f(2)|=|4a+2b+c|

=|(a+b+c)+3a+b|

=|f(1)+3a+b|

≤|f(1)|+3|a|+|b|

≤1+6+1=8

即|f(2)|≤8。


練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

f(x)=
ax2+bx

(1)當a=-1,b=4時,求函數f(ex)(e是自然對數的底數.)的定義域和值域;
(2)求滿足下列條件的實數a的值:至少有一個正實數b,使函數f(x)的定義域和值域相同.

查看答案和解析>>

科目:高中數學 來源: 題型:

f(x)=
ax2+bx
,求滿足下列條件的實數a的值:至少有一個正實數b,使函數f(x)的定義域和值域相同.

查看答案和解析>>

科目:高中數學 來源: 題型:

設f(x)=ax2+c,且-3≤f(1)≤1,-2≤f(2)≤3,求f(3)的最大值與最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

設f(x)=ax2+bx滿足-1≤f(-1)≤2,2≤f(1)≤4,求f(-2)的取值范圍?.

查看答案和解析>>

科目:高中數學 來源: 題型:

設f(x)=ax2+bx,1≤f(-1)≤2,2≤f(1)≤4,求f(-2)的取值范圍.

查看答案和解析>>
主站蜘蛛池模板: 久久久毛片 | 欧洲视频一区二区 | 成人天堂资源www在线 | 亚洲午夜电影在线 | 亚洲日本国产 | 国产欧美一区二区精品性色 | 亚洲欧美一区二区三区在线 | 久久精品一 | 亚洲欧美精品一区 | 国产精品国产三级国产aⅴ原创 | 国产精品一区二区在线观看 | 日韩一区二区三区在线 | 国产精品一区免费观看 | 色综合久久88色综合天天 | 精品一区二区三区免费视频 | 精品国产欧美一区二区 | 盗摄精品av一区二区三区 | 最新高清无码专区 | 国产96视频| 成人欧美| 久久另类| 日韩中文字幕电影在线观看 | 五月激情站 | 国产视频一区二区在线 | 亚洲精品无人区 | 国产高清视频在线 | 97人人干| 91久久精品一区 | 欧美成人一级片 | 亚洲午夜在线 | 欧美日韩中文国产一区发布 | 欧美精品在线看 | 成人午夜在线视频 | 91精品国产日韩91久久久久久 | 九九99热 | 视频在线91 | 欧美精品在线免费观看 | 欧美午夜精品一区二区三区电影 | 欧美在线一区二区三区 | 天天干天天操天天爽 | 99精品亚洲国产精品久久不卡 |