日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情

【題目】已知函數.

(1)當,求函數的單調區間;

(2)若函數上是減函數,求的最小值;

(3)證明:當時,.

【答案】(1)單調遞減區間是,單調遞增區間是(2)的最小值為(3)見解析

【解析】分析:(1)代入根據導函數的符號判斷函數的單調區間

(2)由單調遞減區間,得到恒成立。進而確定只需當時,即可,對導函數配方,利用二次函數性質求得最大值,進而得出的最小值

(3)函數變形,構造函數求導函數。構造函數,則根據導函數的單調性求其最值,即可證明不等式。

詳解:函數的定義域為

詳解:函數的定義域為

(1)函數

時,;當時,

所以函數的單調遞減區間是,單調遞增區間是.

(2)因上為減函數,故上恒成立.

所以當時,.

故當,即時,.

所以,于是,故的最小值為.

(3)問題等價于.

,則

時,取最小值.

,則,知上單調遞增,在上單調遞減.

故當時,.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】(選修4﹣5:不等式選講)
已知函數f(x)=|2x﹣1|+|2x+a|,g(x)=x+3.
(1)當a=﹣2時,求不等式f(x)<g(x)的解集;
(2)設a>﹣1,且當 時,f(x)≤g(x),求a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在一張足夠大的紙板上截取一個面積為3600平方厘米的矩形紙板ABCD,然后在矩形紙板的四個角上切去邊長相等的小正方形,再把它的邊沿虛線折起,做成一個無蓋的長方體紙盒(如圖).設小正方形邊長為x厘米,矩形紙板的兩邊AB,BC的長分別為a厘米和b厘米,其中a≥b.
(1)當a=90時,求紙盒側面積的最大值;
(2)試確定a,b,x的值,使得紙盒的體積最大,并求出最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設a,b∈R.若直線l:ax+y﹣7=0在矩陣A= 對應的變換作用下,得到的直線為l′:9x+y﹣91=0.求實數a,b的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系xOy中,直線l: (t為參數),與曲線C: (k為參數)交于A,B兩點,求線段AB的長.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

(1)若 都是從0,1,2,3,4五個數中任取的一個數,求上述函數有零點的概率;

(2)若 都是從區間上任取的一個數,求成立的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數,函數

(1)若,求不等式的解集;

(2)若對任意,均存在,使得成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在上海自貿區的利好刺激下,公司開拓國際市場,基本形成了市場規模;自2014年1月以來的第個月(2014年1月為第一個月)產品的內銷量、出口量和銷售總量(銷售總量=內銷量+出口量)分別為(單位:萬件),依據銷售統計數據發現形成如下營銷趨勢:(其中為常數,),已知萬件,萬件,萬件.

(1)求的值,并寫出滿足的關系式;

(2)證明:逐月遞增且控制在2萬件內;

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD為正方形,PA⊥底面ABCD,AD=AP,E為棱PD中點.
(1)求證:PD⊥平面ABE;
(2)若F為AB中點, ,試確定λ的值,使二面角P﹣FM﹣B的余弦值為-

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 欧美蜜桃精品久久久久久 | 日日操夜夜操天天操 | 亚洲伦理 | 精品xxxx户外露出视频 | av成人在线观看 | 国产区视频在线观看 | 欧美日韩视频一区二区 | 免费不卡视频 | 精品一区91| 亚洲高清视频一区 | 国产精品无码久久久久 | 一二三区不卡视频 | 国产一区二区精品 | 综合一区| 97久久精品 | 超碰在线人人 | 日韩专区在线播放 | 欧美日韩一区电影 | 欧美视频一区二区在线 | 国产精品日韩 | 国产高清在线精品一区二区三区 | 不卡av电影在线观看 | 天堂一区二区三区 | 国产精品自产拍在线观看桃花 | 屁屁影院一区二区三区 | 国产一区在线免费观看 | 日韩欧美国产精品一区二区三区 | 超碰日本| 国产精品久久久久久久久免费丝袜 | 黄色一级毛片在线观看 | av在线色| 欧美成人在线网站 | 五月婷婷综合久久 | 中文字幕亚洲乱码 | 国产精品自拍视频 | 性生生活大片免费看视频 | 国产98色在线 | 日韩 | www.亚洲 | 久久久久久一区 | 欧美性一区二区 | 国产一区二区免费电影 |