【題目】已知圓的圓心
在拋物線
上,圓
過原點且與拋物線的準線相切.
(1)求該拋物線的方程;
(2)過拋物線焦點的直線
交拋物線于
,
兩點,分別在點
,
處作拋物線的兩條切線交于
點,求三角形
面積的最小值及此時直線
的方程.
【答案】(1) ;(2) 三角形PAB面積最小值為4,此時直線L的方程為
.
【解析】【試題分析】(1)寫出圓心/半徑,焦點坐標和準線方程,根據原點在圓上及圓心到拋物線的距離建立方程,解方程組求得的值,由此得到拋物線方程.(2)設出直線
的方程,聯立直線的方程和拋物線線的方程,寫出韋達定理,利用導數求出切線的方程,求出交點
的坐標,利用弦長公式和點到直線距離公式寫出三角形面積的表達式,并由此求得最小值.
【試題解析】
(1)由已知可得圓心,半徑
,焦點
,準線
因為圓C與拋物線F的準線相切,所以,
且圓C過焦點F,
又因為圓C過原點,所以圓心C必在線段OF的垂直平分線上,
即
所以,即
,拋物線F的方程為
(2)易得焦點,直線L的斜率必存在,設為k,即直線方程為
設
得
,
,
對求導得
,即
直線AP的方程為,即
,
同理直線BP方程為
設,
聯立AP與BP直線方程解得,即
所以,點P到直線AB的距離
所以三角形PAB面積,當僅當
時取等號
綜上:三角形PAB面積最小值為4,此時直線L的方程為.
科目:高中數學 來源: 題型:
【題目】某單位對一崗位面向社會公開招聘,若甲筆試成績與面試成績至少有一項比乙高,則稱甲不亞于乙.在18位應聘者中,如果某應聘者不亞于其他17人,則稱其為“優秀人才”.那么這18人中“優秀人才”數最多為( )
A. 1 B. 2 C. 9 D. 18
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數.
(1)當時,求函數
的定義域;
(2)若函數有且僅有一個零點,求實數m的取值范圍;
(3)任取,若不等式
對任意
恒成立,求實數m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知集合M={x|x<-3,或x>5},P={x|(x-a)·(x-8)≤0}.
(1)求M∩P={x|5<x≤8}的充要條件;
(2)求實數a的一個值,使它成為M∩P={x|5<x≤8}的一個充分但不必要條件.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】給出下列說法:
①函數y=2x與函數y=log2x互為反函數;
②若集合A={x|kx2+4x+4=0}中只有一個元素,則k=1;
③若,則f(x)=x2-2;
④函數y=log2(1-x)的單調減區間是(-∞,1);
其中所有正確的序號是______.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=(2x-4)ex+a(x+2)2(x>0,a∈R,e是自然對數的底數).
(1)若f(x)是(0,+∞)上的單調遞增函數,求實數a的取值范圍;
(2)當a∈時,證明:函數f(x)有最小值,并求函數f(x)的最小值的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知中心在原點的橢圓C的一個頂點為,焦點在x軸上,右焦點到直線
的距離為
.
求橢圓的標準方程;
若直線l:
交橢圓C于M,N兩點,設點N關于x軸的對稱點為
點
與點M不重合
,且直線
與x軸的交于點P,求
的面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某校早上8:00開始上課,假設該校學生小張與小王都在早上7:30--7:50之間到校,且每人在該時間段的任何時刻到校是等可能的,求小張比小王至少早5分鐘到校的概率.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com