(本小題滿分14分)如圖橢圓的上頂點為A,左頂點為B, F為右焦點, 過F作平行于AB的直線交橢圓于C、D兩點. 作平行四邊形OCED, E恰在橢圓上。
(Ⅰ)求橢圓的離心率;
(Ⅱ)若平行四邊形OCED的面積為, 求橢圓的方程.
科目:高中數學 來源: 題型:解答題
(本題12分)直線l:y=kx+1與雙曲線C:的右支交于不同的兩點A,B
(Ⅰ)求實數k的取值范圍;
(Ⅱ)是否存在實數k,使得以線段AB為直徑的圓經過雙曲線C的右焦點F?若存在,求出k的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題滿分12分)
如果兩個橢圓的離心率相等,那么就稱這兩個橢圓相似.已知橢圓與橢圓
相似,且橢圓
的一個短軸端點是拋物線
的焦點.
(Ⅰ)試求橢圓的標準方程;
(Ⅱ)設橢圓的中心在原點,對稱軸在坐標軸上,直線
與橢圓
交于
兩點,且與橢圓
交于
兩點.若線段
與線段
的中點重合,試判斷橢圓
與橢圓
是否為相似橢圓?并證明你的判斷.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題滿分12分)已知橢圓的焦點坐標為,
,且短軸一頂點B滿足
,
(Ⅰ) 求橢圓的方程;
(Ⅱ)過的直線l與橢圓交于不同的兩點M、N,則△
MN的內切圓的面積是否存在最大值?若存在求出這個最大值及此時的直線方程;若不存在,請說明理由。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本題滿分13分) 如圖,是離心率為
的橢圓,
:
(
)的左、右焦點,直線
:
將線段
分成兩段,其長度之比為1 : 3.設
是
上的兩個動點,線段
的中點
在直線
上,線段
的中垂線與
交于
兩點.
(Ⅰ) 求橢圓C的方程;
(Ⅱ) 是否存在點,使以
為直徑的圓經過點
,若存在,求出
點坐標,若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓的離心率為
,橢圓短軸的一個端點與兩個焦
(Ⅰ)求橢圓的方程;
(Ⅱ)已知動直線與橢圓
相交于
、
兩點. ①若線段
中點的
橫坐標為,求斜率
的值;②若點
,求證:
為定值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(12分)已知拋物線:
過點
.(1)求拋物線
的方程,并求其準線方程;
(2)是否存在平行于(
為坐標原點)的直線
,使得直線
與拋物線
有公共點,且直線
與
的
距離等于?若存在,求出直線
的方程;若不存在,說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com