日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

如圖正方形ADEF與梯形ABCD所在的平面互相垂直,AD⊥CD,AB∥CD,
AB=AD=2,CD=4,M為CE的中點(diǎn).
(I)求證:BM∥平面ADEF;
(Ⅱ)求證:平面BDE⊥平面BEC;
(Ⅲ)求平面BEC與平面ADEF所成銳二面角的余弦值.
【答案】分析:(I)取DE中點(diǎn)N,連接MN,AN,由三角形中位線定理,結(jié)合已知中AB∥CD,AB=AD=2,CD=4,易得四邊形ABMN為平行四邊形,所以BM∥AN,再由線面平面的判定定理,可得BM∥平面ADEF;
(II)由已知中正方形ADEF與梯形ABCD所在的平面互相垂直,易得ED⊥平面ABCD,進(jìn)而ED⊥BC,由勾股定理,我們易判斷出△BCD中,BC⊥BD,由線面垂直的判定定理可得BC⊥平面BDE,再由面面垂直的判定定理,即可得到平面BDE⊥平面BEC;
(III)以D為原點(diǎn),DA,DC,DE所在直線為x,y,z軸,建立空間直角坐標(biāo)系,分別求出平面BEC與平面ADEF的法向量,代入向量夾角公式,即可求出平面BEC與平面ADEF所成銳二面角的余弦值.
解答:證明:(I)取DE中點(diǎn)N,連接MN,AN
在△EDC中,M、N分別為EC,ED的中點(diǎn),所以MN∥CD,且MN=CD.
由已知AB∥CD,AB=CD,所以MN∥AB,且MN=AB.
所以四邊形ABMN為平行四邊形,所以BM∥AN
又因?yàn)锳N?平面ADEF,
且BM?平面ADEF,
所以BM∥平面ADEF.(4分)
(II)在正方形ADEF中,ED⊥AD,
又因?yàn)槠矫鍭DEF⊥平面ABCD,
且平面ADEF∩平面ABCD=AD,
所以ED⊥平面ABCD,所以ED⊥BC.
在直角梯形ABCD中,
AB=AD=2,CD=4,可得BC=2
在△BCD中,BD=BC=2,CD=4,
所以BC⊥BD.
所以BC⊥平面BDE,又因?yàn)锽C?平面BCE,
所以平面BDE⊥平面BEC.(9分)
解:(III)由(2)知ED⊥平面ABCD,且AD⊥CD.
以D為原點(diǎn),DA,DC,DE所在直線為x,y,z軸,建立空間直角坐標(biāo)系.
B(2,2,0),C(0,4,0),E(0,0,2),平面ADEF的一個(gè)法向量為=(0,1,0).
設(shè)=(x,y,z)為平面BEC的一個(gè)法向量,因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101223015717143100/SYS201311012230157171431016_DA/6.png">,

令x=1,得y=1,z=2
所以=(1,1,2)為平面BEC的一個(gè)法向量
設(shè)平面BEC與平面ADEF所成銳二面角為θ
則cosθ==
所以平面BEC與平面ADEF所成銳二面角為余弦值為
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是二面角的平面角及求法,直線與平面平行的判定,平面與平面垂直的判定,熟練掌握空間直線與平面不同位置關(guān)系(平行和垂直)的判定定理、性質(zhì)定理、定義及幾何特征是解答本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖正方形ADEF與梯形ABCD所在的平面互相垂直,AD⊥CD,AB∥CD,
AB=AD=2,CD=4,M為CE的中點(diǎn).
(Ⅰ)求證:BM∥平面ADEF;
(Ⅱ)求證:平面BDE⊥平面BEC;
(Ⅲ)求平面BEC與平面ADEF所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖正方形ADEF與梯形ABCD所在的平面互相垂直,AD⊥CD,ABCD,
AB=AD=2,CD=4,M為CE的中點(diǎn).
(I)求證:BM平面ADEF;
(Ⅱ)求證:平面BDE⊥平面BEC;
(Ⅲ)求平面BEC與平面ADEF所成銳二面角的余弦值.
精英家教網(wǎng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年云南省部分名校高三12月聯(lián)考理科數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,正方形ADEF與梯形ABCD所在的平面互相垂直,AD丄CD,AB//CD,AB=AD=CD=2,點(diǎn)M在線段EC上.

(I)當(dāng)點(diǎn)M為EC中點(diǎn)時(shí),求證:  面;

(II)求證:平面BDE丄平面BEC;

(III)若平面說(shuō)BDM與平面ABF所成二面角銳角,且該二面角的余弦值為時(shí),求三棱錐M-BDE的體積.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年江西省宜春市上高二中高三(下)第六次月考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

如圖正方形ADEF與梯形ABCD所在的平面互相垂直,AD⊥CD,AB∥CD,
AB=AD=2,CD=4,M為CE的中點(diǎn).
(I)求證:BM∥平面ADEF;
(Ⅱ)求證:平面BDE⊥平面BEC;
(Ⅲ)求平面BEC與平面ADEF所成銳二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案
主站蜘蛛池模板: 国产最新网站 | 跪求黄色网址 | 国产高潮好爽受不了了夜色 | 日韩在线视频一区 | 欧美一级特| 欧美成人一区二区三区片免费 | 免费在线日本 | 色狠狠一区 | 亚洲欧美在线免费 | 国产精品高潮呻吟久久久 | 精品久久一区 | 毛片在线免费播放 | 精品久久一区二区 | 欧美午夜精品一区二区三区电影 | 欧美日批 | 中文字幕亚洲一区 | 国产精品视频一区在线观看 | 日韩欧美在线播放 | 九九热在线视频 | 日韩精品一区二区三区在线 | 国产在线观看一区二区三区 | www.国产精品 | av天空| 超碰网址 | 蜜月久久99静品久久久久久 | 在线国产视频 | 久久久久久久一区 | 国产精品无 | 91精品国产综合久久婷婷香蕉 | 国产二区三区 | 国产成人精品二区 | 久久综合久色欧美综合狠狠 | 午夜影院网站 | 亚洲视频精品一区 | 久久青草视频 | 中文字幕亚洲一区二区三区 | 日日人人 | 日韩在线视频一区 | 日韩视频在线观看不卡 | 黄色av免费 | 欧美78videosex性欧美 |