【題目】在平面直角坐標點xOy中,以坐標原點為極點,x軸正半軸為極軸建立極坐標系,曲線C1的極坐標方程為ρsinθ=6.
(1)A為曲線C1上的動點,點M在線段OA上,且滿足|OM||OA|=36,求點M的軌跡C2的直角坐標方程;
(2)點E的極坐標為(4,),點F在曲線C2上,求△OEF面積的最大值
【答案】(1)x2+(y﹣3)2=9(y≠0)(2)
【解析】
(1)直接利用轉換關系式,把參數方程極坐標方程和直角坐標方程之間進行轉換;
(2)利用三角形的面積公式的應用和三角函數關系式的恒等變換和正弦型函數的性質的應用求出結果.
(1)設點A(ρ1,θ),點M(ρ,θ),由于曲線C1的極坐標方程為ρsinθ=6,A為曲線C1上的動點,故,點M在線段OA上,且滿足|OM||OA|=36,
所以,整理得點M的軌跡C2的直角坐標方程為x2+(y﹣3)2=9(y≠0).
(2)設F點為(ρ0,α),(),則ρ0=6sinα,|OF|=ρ0,且
(
),或
(
),|OE|=4,
所以12
3
,
由于,故當α
時,
.
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=|x﹣2|+|x+1|.
(1)解關于x的不等式f(x)≤5;
(2)若函數f(x)的最小值記為m,設a,b,c均為正實數,且a+4b+9c=m,求的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】微信運動,是由騰訊開發的一個類似計步數據庫的公眾賬號.用戶可以通過關注微信運動公眾號查看自己每天行走的步數,同時也可以和其他用戶進行運動量的或點贊.微信運動公眾號為了解用戶的一些情況,在微信運動用戶中隨機抽取了100名用戶,統計了他們某一天的步數,數據整理如下:
| ||||||
| 5 | 20 | 50 | 15 | 5 | 5 |
(1)根據表中數據,在如圖所示的坐標平面中作出其頻率分布直方圖,并在縱軸上標明各小長方形的高;
(2)若視頻率分布為概率分布,在微信運動用戶中隨機抽取3人,求至少2人步數多于1.2萬步的概率;
(3)若視頻率分布為概率分布,在微信運動用戶中隨機抽取2人,其中每日走路不超過0.8萬步的有人,超過1.2萬步的有
人,設
,求
的分布列及數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某學校高三年級有400名學生參加某項體育測試,根據男女學生人數比例,使用分層抽樣的方法從中抽取了100名學生,記錄他們的分數,將數據分成7組:,整理得到如下頻率分布直方圖:
(1)若該樣本中男生有55人,試估計該學校高三年級女生總人數;
(2)若規定小于60分為“不及格”,從該學校高三年級學生中隨機抽取一人,估計該學生不及格的概率;
(3)若規定分數在為“良好”,
為“優秀”.用頻率估計概率,從該校高三年級隨機抽取三人,記該項測試分數為“良好”或“優秀”的人數為X,求X的分布列和數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某險種的基本保費為a(單位:元),繼續購買該險種的投保人稱為續保人,續保人本年度的保費與其上年度出險次數的關聯如下:
上年度出險次數 | 0 | 1 | 2 | 3 | 4 | ≥5 |
保費 | 0.85a | a | 1.25a | 1.5a | 1.75a | 2a |
隨機調查了該險種的200名續保人在一年內的出險情況,得到如下統計表:
出險次數 | 0 | 1 | 2 | 3 | 4 | ≥5 |
頻數 | 60 | 50 | 30 | 30 | 20 | 10 |
(1)記A為事件:“一續保人本年度的保費不高于基本保費”,求P(A)的估計值;
(2)記B為事件:“一續保人本年度的保費高于基本保費但不高于基本保費的160%”,求P(B)的估計值;
(3)求續保人本年度平均保費的估計值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,是邊長為2的正方形,
平面
,且
.
(Ⅰ)求證:平面平面
;
(Ⅱ)線段上是否存在一點
,使二而角
等于45°?若存在,請找出點
的位置;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com