如圖,在四棱柱ABCD-A1B1C1D1中,側棱AA1⊥底面ABCD,AB∥DC,.
(Ⅰ)求證:CD⊥平面ADD1A1;
(Ⅱ)若直線AA1與平面AB1C所成角的正弦值為,求k的值.
(Ⅰ)見解析(Ⅱ)1
解析試題分析:(Ⅰ)取CD的中點為E,連結BE,則ADEB為平行四邊形,所以ADBE=4k,所以BC2=BE2+EC2,所以BE⊥DC,所以AD與BC垂直,AA1⊥面ABCD,所以AA1⊥CD,所以CD垂直面AA1D1D;(Ⅱ)以D為原點,DA,DC,DD1為
軸,建立空間直角坐標系,寫出A、A1,B1,C的坐標,求出面AB1C的一個法向量,算出向量
坐標,計算出這兩個向量的夾角,再利用向量夾角與線面角關系,列出關于k的方程,若能解出k值..
試題解析:(Ⅰ)取CD的中點E,連結BE.
∵AB∥DE,ABDE
3k,∴四邊形ABED為平行四邊形, 2分
∴BE∥AD且BEAD
4k.
在△BCE中,∵BE4k,CE
3k,BC
5k,∴BE2+CE2
BC2,
∴∠BEC90°,即BE⊥CD,
又∵BE∥AD,∴CD⊥AD. 4分
∵AA1⊥平面ABCD,CD平面ABCD,
∴AA1⊥CD.又AA1∩ADA,
ADD1A1. 6分
(Ⅱ)以D為原點,,
,
的方向為x,y,z軸的正方向建立如圖所示的空間直角坐標系,
則
所以,
,
.
設平面AB1C的法向量n(x,y,z),
則由得
取y2,得
. 9分
設AA1與平面AB1C所成角為θ,則
sin θ|cos〈
,n〉|
,
解得k1,故所求k的值為1. 12分
考點:面面垂直的性質,線面垂直的判定,線面角的計算,推理論證能力,運算求解能力,空間想象能力
科目:高中數學 來源: 題型:解答題
如圖2,四邊形為矩形,
⊥平面
,
,作如圖3折疊,折痕
,其中點
分別在線段
上,沿
折疊后點
疊在線段
上的點記為
,并且
⊥
.(1)證明:
⊥平面
;
(2)求三棱錐的體積.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,四棱柱中,
底面
.四邊形
為梯形,
,且
.過
三點的平面記為
,
與
的交點為
.
(1)證明:為
的中點;
(2)求此四棱柱被平面所分成上下兩部分的體積之比;
(3)若,
,梯形
的面積為6,求平面
與底面
所成二面角大小.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖所示,在邊長為的正方形
中,點
在線段
上,且
,
,作
//
,分別交
,
于點
,
,作
//
,分別交
,
于點
,
,將該正方形沿
,
折疊,使得
與
重合,構成如圖所示的三棱柱
.
(1)求證:平面
;
(2)若點E為四邊形BCQP內一動點,且二面角E-AP-Q的余弦值為,求|BE|的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,在直三棱柱A1B1C1-ABC中,AB⊥AC,AB=AC=2,A1A=4,點D是BC的中點.
(1)求異面直線A1B與C1D所成角的余弦值;
(2)求平面ADC1與平面ABA1夾角的正弦值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com