(本小題滿分12分)某廠生產的產品在出廠前都要做質量檢測,每一件一等品都能通過
檢測,每一件二等品通過檢測的概率為.現有10件產品,其中6件是一等品,4件是二等
品.
(Ⅰ) 隨機選取1件產品,求能夠通過檢測的概率;
(Ⅱ)
隨機選取3件產品,其中一等品的件數記為,求
的分布列;
(Ⅲ) 隨機選取3件產品,求這三件產品都不能通過檢測的概率.
Ⅰ)
(Ⅱ)
|
0 |
1 |
2 |
3 |
|
|
|
|
|
故的分布列為
(Ⅲ) .
【解析】本題考查離散型隨機變量的分布列,考查等可能事件的概率,考查獨立重復試驗的概率公式,本題是一個概率的綜合題目
(Ⅰ)設隨機選取一件產品,能夠通過檢測的事件為A,事件A包括兩種情況,一是抽到的是一個一等品,二是抽到的是一個二等品,這兩種情況是互斥的,根據互斥事件的概率公式得到結果.
(II)由題意知X的可能取值是0,1,2,3,結合變量對應的事件和等可能事件的概率,寫出變量的概率,寫出分布列.
(III)隨機選取3件產品,這三件產品都不能通過檢測,包括兩個環節,第一這三個產品都是二等品,且這三件都不能通過檢測,根據相互獨立事件同時發生的概率得到結果.
解(Ⅰ)設隨機選取一件產品,能夠通過檢測的事件為
事件等于事件 “選取一等品都通過檢測或者是選取二等品通過檢測”…………2分
(Ⅱ)
由題可知可能取值為0,1,2,3.
,
,
,
.
|
0 |
1 |
2 |
3 |
|
|
|
|
|
故的分布列為
(Ⅲ)設隨機選取3件產品都不能通過檢測的事件為
事件等于事件“隨機選取3件產品都是二等品且都不能通過檢測”
所以,.
科目:高中數學 來源: 題型:
ON |
ON |
5 |
OM |
OT |
M1M |
N1N |
OP |
OA |
查看答案和解析>>
科目:高中數學 來源: 題型:
(2009湖南卷文)(本小題滿分12分)
為拉動經濟增長,某市決定新建一批重點工程,分別為基礎設施工程、民生工程和產業建設工程三類,這三類工程所含項目的個數分別占總數的、
、
.現有3名工人獨立地從中任選一個項目參與建設.求:
(I)他們選擇的項目所屬類別互不相同的概率; w.w.w.k.s.5.u.c.o.m
(II)至少有1人選擇的項目屬于民生工程的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
(本小題滿分12分)
某民營企業生產A,B兩種產品,根據市場調查和預測,A產品的利潤與投資成正比,其關系如圖1,B產品的利潤與投資的算術平方根成正比,其關系如圖2,
(注:利潤與投資單位是萬元)
(1)分別將A,B兩種產品的利潤表示為投資的函數,并寫出它們的函數關系式.(2)該企業已籌集到10萬元資金,并全部投入到A,B兩種產品的生產,問:怎樣分配這10萬元投資,才能使企業獲得最大利潤,其最大利潤為多少萬元.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com