【題目】如圖,三棱柱中,
平面
,
,
,
,
,
是
的中點,
是
的中點.
(Ⅰ)證明:平面
;
(Ⅱ)是線段
上一點,且直線
與平面
所成角的正弦值為
,求二面角
的余弦值.
科目:高中數學 來源: 題型:
【題目】2019年12月以來,湖北武漢市發現多起病毒性肺炎病例,并迅速在全國范圍內開始傳播,專家組認為,本次病毒性肺炎病例的病原體初步判定為新型冠狀病毒,該病毒存在人與人之間的傳染,可以通過與患者的密切接觸進行傳染.我們把與患者有過密切接觸的人群稱為密切接觸者,每位密切接觸者被感染后即被稱為患者.已知每位密切接觸者在接觸一個患者后被感染的概率為,某位患者在隔離之前,每天有
位密切接觸者,其中被感染的人數為
,假設每位密切接觸者不再接觸其他患者.
(1)求一天內被感染人數為的概率
與
、
的關系式和
的數學期望;
(2)該病毒在進入人體后有14天的潛伏期,在這14天的潛伏期內患者無任何癥狀,為病毒傳播的最佳時間,設每位患者在被感染后的第二天又有位密切接觸者,從某一名患者被感染,按第1天算起,第
天新增患者的數學期望記為
.
(i)求數列的通項公式,并證明數列
為等比數列;
(ii)若戴口罩能降低每位密切接觸者患病概率,降低后的患病概率,當
取最大值時,計算此時
所對應的
值和此時
對應的
值,根據計算結果說明戴口罩的必要性.(取
)
(結果保留整數,參考數據:)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
在平面直角坐標系中,已知直線
的參數方程為
為參數,
),以原點
為極點,以
軸正半軸建立極坐標系,曲線
的極坐標系方程為
.
(1)寫出直線的極坐標方程和曲線
的直角坐標方程;
(2)若直線與曲線
相交于
兩點,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,曲線
的參數方程為
,以坐標原點
為極點,
軸非負半軸為極軸建立極坐標系,點
為曲線
上的動點,點
在線段
的延長線上,且滿足
,點
的軌跡為
.
(1)求曲線,
的極坐標方程;
(2)設點的極坐標為
,求
面積的最小值。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某城市為了解游客人數的變化規律,提高旅游服務質量,收集并整理了2017年1月至2019年12月期間月接待游客量(單位:萬人)的數據,繪制了下面的折線圖.根據該折線圖,下列結論錯誤的是( )
A.年接待游客量逐年增加
B.各年的月接待游客量高峰期大致在8月
C.2017年1月至12月月接待游客量的中位數為30萬人
D.各年1月至6月的月接待游客量相對于7月至12月,波動性更小,變化比較平穩
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】甲、乙、丙三人在政治、歷史、地理、物理、化學、生物、技術7門學科中任選3門.若同學甲必選物理,則下列說法正確的是( )
A.甲、乙、丙三人至少一人選化學與全選化學是對立事件
B.甲的不同的選法種數為15
C.已知乙同學選了物理,乙同學選技術的概率是
D.乙、丙兩名同學都選物理的概率是
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某省新高考將實行“”模式,“3”為全國統考科目語文數學外語,所有學生必考;“1”為首選科目,考生須在物理歷史兩科中選擇一科;“2”為再選科目,考生可在化學生物思想政治地理4個科目中選擇兩科.某考生已經確定“首選科目”為物理,如果他從“再選科目”中隨機選擇兩科,則思想政治被選中的概率為( )
A.B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓:
的左、右焦點分別為
,
,若橢圓經過點
,且△PF1F2的面積為2.
(1)求橢圓的標準方程;
(2)設斜率為1的直線與以原點為圓心,半徑為
的圓交于A,B兩點,與橢圓C交于C,D兩點,且
(
),當
取得最小值時,求直線
的方程.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com