【題目】設函數,
,
.
(1)求函數的單調區間;
(2)若函數有兩個零點
,
(
).
(i)求的取值范圍;
(ii)求證:隨著
的增大而增大.
【答案】(1)見解析;(2)(i)(ii)證明見解析
【解析】
(1)求出導函數,分類討論即可求解;
(2)(i)結合(1)的單調性分析函數有兩個零點求解參數取值范圍;(ii)設,通過轉化
,討論函數的單調性得證.
(1)因為,所以
當時,
在
上恒成立,所以
在
上單調遞增,
當時,
的解集為
,
的解集為
,
所以的單調增區間為
,
的單調減區間為
;
(2)(i)由(1)可知,當時,
在
上單調遞增,至多一個零點,不符題意,當
時,因為
有兩個零點,所以
,解得
,因為
,且
,所以存在
,使得
,又因為
,設
,則
,所以
單調遞增,所以
,即
,因為
,所以存在
,使得
,綜上,
;(ii)因為
,所以
,因為
,所以
,設
,則
,所以
,解得
,所以
,所以
,設
,則
,設
,則
,所以
單調遞增,所以
,所以
,即
,所以
單調遞增,即
隨著
的增大而增大,所以
隨著
的增大而增大,命題得證.
科目:高中數學 來源: 題型:
【題目】已知三個內角
所對的邊分別是
,若
.
(1)求角;
(2)若的外接圓半徑為2,求
周長的最大值.
【答案】(1) ;(2)
.
【解析】試題分析:(1)由正弦定理將邊角關系化為邊的關系,再根據余弦定理求角
,(2)先根據正弦定理求邊,用角表示周長,根據兩角和正弦公式以及配角公式化為基本三角函數,最后根據正弦函數性質求最大值.
試題解析:(1)由正弦定理得,
∴,∴
,即
因為,則
.
(2)由正弦定理
∴,
,
,
∴周長
∵,∴
∴當即
時
∴當時,
周長的最大值為
.
【題型】解答題
【結束】
18
【題目】經調查,3個成年人中就有一個高血壓,那么什么是高血壓?血壓多少是正常的?經國際衛生組織對大量不同年齡的人群進行血壓調查,得出隨年齡變化,收縮壓的正常值變化情況如下表:
其中: ,
,
(1)請畫出上表數據的散點圖;
(2)請根據上表提供的數據,用最小二乘法求出關于
的線性回歸方程
;(
的值精確到0.01)
(3)若規定,一個人的收縮壓為標準值的0.9~1.06倍,則為血壓正常人群;收縮壓為標準值的1.06~1.12倍,則為輕度高血壓人群;收縮壓為標準值的1.12~1.20倍,則為中度高血壓人群;收縮壓為標準值的1.20倍及以上,則為高度高血壓人群.一位收縮壓為180mmHg的70歲的老人,屬于哪類人群?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖1,已知平面四邊形中,
.點
在
上,且滿足
.沿
將
折起,使得平面
平面
,如圖2.
(1)若點是
的中點,證明:
平面
;
(2)在(1)的條件下,求三棱錐的體積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在多面體ABCDEF中,四邊形ABCD是菱形,AC,BD相交于點O,EF∥AB,AB=2EF,平面BCF⊥平面ABCD,BF=CF,點G為BC的中點.求證:
(1) 直線OG∥平面EFCD;
(2) 直線AC⊥平面ODE.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓:
的左,右焦點分別為
,
,點
為橢圓
上任意一點,點
關于原點
的對稱點為點
,有
,且當
的面積最大時為等邊三角形.
(1)求橢圓的標準方程;
(2)與圓相切的直線
:
交橢圓
于
,
兩點,若橢圓上存在點
滿足
,求四邊形
面積的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為踐行“綠水青山就是金山銀山”的發展理念和提高生態環境的保護意識,高二年級準備成立一個環境保護興趣小組.該年級理科班有男生400人,女生200人;文科班有男生100人,女生300人.現按男、女用分層抽樣從理科生中抽取6人,按男、女分層抽樣從文科生中抽取4人,組成環境保護興趣小組,再從這10人的興趣小組中抽出4人參加學校的環保知識競賽.
(1)設事件為“選出的這4個人中要求有兩個男生兩個女生,而且這兩個男生必須文、理科生都有”,求事件
發生的概率;
(2)用表示抽取的4人中文科女生的人數,求
的分布列和數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的離心率為
,短軸長為4.
(1)求橢圓C的標準方程.
(2)設直線l過點(2,0)且與橢圓C相交于不同的兩點A、B,直線與x軸交于點D,E是直線
上異于D的任意一點,當
時,直線BE是否恒過x軸上的定點?若過,求出定點坐標,若不過,請說明理由。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在中,
,
分別為
,
的中點,
,如圖1.以
為折痕將
折起,使點
到達點
的位置,如圖2.
如圖1 如圖2
(1)證明:平面平面
;
(2)若平面平面
,求直線
與平面
所成角的正弦值。
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com