(1)求以x±2y=0為漸近線,且過點(diǎn)的雙曲線A的方程;
(2)求以雙曲線A的頂點(diǎn)為焦點(diǎn),焦點(diǎn)為頂點(diǎn)的橢圓B的方程;
(3)橢圓B上有兩點(diǎn)P,Q,O為坐標(biāo)原點(diǎn),若直線OP,OQ斜率之積為,求證:|OP|2+|OQ|2為定值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(08年濰坊市四模文) 直線l∶y=ax+1與雙曲線C∶相交于A,B兩點(diǎn).
(1)a為何值時(shí),以AB為直徑的圓過原點(diǎn);
(2)是否存在這樣的實(shí)數(shù)a,使A,B關(guān)于直線x-2y=0對(duì)稱,若存在,求a的值,若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
在直角坐標(biāo)系xOy中,直線x-2y+4=0與橢圓+=1交于A,B兩點(diǎn),F是橢圓的左焦點(diǎn).求以O,F,A,B為頂點(diǎn)的四邊形的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知圓x2+y2-2x-4y+m=0.
(1)此方程表示圓,求m的取值范圍;
(2)若(1)中的圓與直線x+2y-4=0相交于M、N兩點(diǎn),且OM⊥ON(O為坐標(biāo)原點(diǎn)),求m的值;
(3)在(2)的條件下,求以MN為直徑的圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知圓x2+y2-2x-4y+m=0.
(1)此方程表示圓,求m的取值范圍;
(2)若(1)中的圓與直線x+2y-4=0相交于M、N兩點(diǎn),且OM⊥ON(O為坐標(biāo)原點(diǎn)),求m的值;
(3)在(2)的條件下,求以MN為直徑的圓的方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com