日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情

【題目】為解決城市的擁堵問題,某城市準備對現有的一條穿城公路MON進行分流,已知穿城公路MON自西向東到達城市中心后轉向方向,已知∠MON=,現準備修建一條城市高架道路L,L在MO上設一出入口A,在ON上設一出口B,假設高架道路L在AB部分為直線段,且要求市中心與AB的距離為10km.

(1)求兩站點A,B之間的距離;

(2)公路MO段上距離市中心30km處有一古建筑群C,為保護古建筑群,設立一個以C為圓心,5km為半徑的圓形保護區.因考慮未來道路AB的擴建,則如何在古建筑群和市中心之間設計出入口A,才能使高架道路及其延伸段不經過保護區?

【答案】(1);(2)

【解析】

(1)過O作直線OE⊥AB于E,則OE=10,設∠EOA=,可求∠EOB=,(),可得AE=10tan,BE=10tan(),可求AB=,又,結合,可得cos,可求兩出入口之間距離的最小值為20().

(2)設切點為F,以為坐標原點,以所在的直線為軸,建立平面直角坐標系,設直線AB的方程為y=kx+t(k>0),可求t=20k,或t=60k,可求A(﹣20,0),此時OA=20,又由(1)可知當時,OA=10,綜上即可得解.

(1)過作直線OE⊥AB于E,則OE=10,設∠EOA=α,則∠EOB=﹣α,(),

故AE=10tan,BE=10tan(),

AB=10tan+10tan()=10()=

又cos=cos(﹣cos+sin)=

,可得:2

故cos,當且僅當2,即時取等號,

此時,AB有最小值為20(),即兩出入口之間距離的最小值為20().

(2)由題意可知直線AB是以為圓心,10為半徑的圓的切線,根據題意,直線AB與圓C要相離,其臨界位置為直線AB與圓C相切,

設切點為F,此時直線AB為圓與圓的公切線,因為,出入口A在古建筑群和市中心之間,

如圖所示,以為坐標原點,以所在的直線為軸,建立平面直角坐標系

由CF=5,OE=10,因為圓的方程為x2+y2=100,圓的方程為(x+30)2+y2=25,

設直線AB的方程為y=kx+t(k>0),

則:,所以兩式相除可得:=2,所以t=20k,或t=60k,

所以,此時A(﹣20,0)或A(﹣60,0)(舍去),此時OA=20,

又由(1)可知當時,OA=10,綜上,OA

即設計出入口A離市中心的距離在10km到20km之間時,才能使高架道路及其延伸段不經過保護區.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數.

(1)若,求的單調區間;

(2)若,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】(本題滿分12分)

今年十一黃金周,記者通過隨機詢問某景區110名游客對景區的服務是否滿意,得到如下的列聯表:

性別與對景區的服務是否滿意  單位:名




總計

滿意

50

30

80

不滿意

10

20

30

總計

60

50

110

1)從這50名女游客中按對景區的服務是否滿意采取分層抽樣,抽取一個容量為5的樣本,問樣本中滿意與不滿意的女游客各有多少名?

2)從(1)中的5名女游客樣本中隨機選取兩名作深度訪談,求選到滿意與不滿意的女游客各一名的概率;

3)根據以上列聯表,問有多大把握認為游客性別與對景區的服務滿意有關

注:

臨界值表:

P()

0.05

0.025

0.010

0.005


3.841

5.024

6.635

7.879

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數

(1)討論的單調性;

(2)時,,求的最大整數值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系xOy中,圓C經過M(13)N(42)P(1,﹣7)三點,且直線lxay10(aR)是圓C的一條對稱軸,過點A(6a) 作圓C的一條切線,切點為B,則線段AB的長度為_______

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】過拋物線的焦點作直線交拋物線于兩點,已知點為坐標原點.的最小值為3.

(1)求拋物線的方程;

(2)過點作直線,交拋物線于兩點,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知點和點,直線的斜率乘積為常數,設點的軌跡為,下列說法正確的是(

A.存在非零常數,使上所有點到兩點距離之和為定值

B.存在非零常數,使上所有點到兩點距離之和為定值

C.不存在非零常數,使上所有點到兩點距離之差的絕對值為定值

D.不存在非零常數,使上所有點到兩點距離之差的絕對值為定值

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=ax+lnx(a∈R),g(x)=x2emx(m∈R,e為自然對數的底數).

(1)討論函數f(x)的單調性及最值;

(2)若a>0,且對x1,x2∈[0,2],f(x1+1)≥g(x2)+a﹣1恒成立,求實數m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在全國第五個扶貧日到來之前,某省開展精準扶貧,攜手同行的主題活動,某貧困縣調查基層干部走訪貧困戶數量.甲鎮有基層干部60人,乙鎮有基層干部60人,丙鎮有基層干部80人,每人都走訪了若干貧困戶,按照分層抽樣,從甲、乙、丙三鎮共選20名基層干部,統計他們走訪貧困戶的數量,并將走訪數量分成5組,繪制成如圖所示的頻率分布直方圖.

1)求這20人中有多少人來自丙鎮,并估計甲、乙、丙三鎮的基層干部走訪貧困戶戶數的中位數(精確到整數位);

2)如果把走訪貧困戶達到或超過35戶視為工作出色,求選出的20名基層干部中工作出色的人數,并從中選2人做交流發言,求這2人中至少有一人走訪的貧困戶在的概率.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 日韩av不卡在线 | 亚洲精品在线网站 | 成人a视频| 日韩性色视频 | 欧美第7页| 50人群体交乱视频 | 免费黄色小视频 | 亚洲第一区国产精品 | 国产一区二区三区久久久 | 亚洲永久免费 | 日本在线视频一区二区三区 | 婷婷激情综合 | 成人福利av| 国产成人综合av | 亚洲综合精品视频 | 一区二区亚洲 | 免费精品 | 欧美一区二区在线 | 国产全黄| 成人在线免费观看视频 | 亚州av在线 | 欧美一区不卡 | 91久久精品一区二区二区 | 99国产精品久久久 | 91精品国产综合久久久久久 | 蜜桃视频在线观看www社区 | 日韩成人精品在线 | 日本精品久久 | 日韩精品视频网 | 午夜剧场av | 欧美videosex性欧美黑吊 | 国产极品美女在线精品图片 | 久久亚洲美女 | 中文成人在线 | 午夜免 | 欧美一区2区三区4区公司二百 | 国产一区在线观看视频 | 91久久精品一区二区二区 | 一级黄色爱爱视频 | 亚洲黑人在线观看 | 草草电影 |