【題目】為調研高中生的作文水平.在某市普通高中的某次聯考中,參考的文科生與理科生人數之比為,且成績分布在
的范圍內,規定分數在50以上(含50)的作文被評為“優秀作文”,按文理科用分層抽樣的方法抽取400人的成績作為樣本,得到成績的頻率分布直方圖,如圖所示.其中
構成以2為公比的等比數列.
(1)求的值;
(2)填寫下面列聯表,能否在犯錯誤的概率不超過0.01的情況下認為“獲得優秀作文”與“學生的文理科”有關?
文科生 | 理科生 | 合計 | |
獲獎 | 6 | ||
不獲獎 | |||
合計 | 400 |
(3)將上述調查所得的頻率視為概率,現從全市參考學生中,任意抽取2名學生,記“獲得優秀作文”的學生人數為,求
的分布列及數學期望.
附:,其中
.
.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
【答案】(1),
,
.(2)填表見解析;在犯錯誤的概率不超過0.01的情況下,不能認為“獲得優秀作文”與“學生的文理科”有關(3)詳見解析
【解析】
(1)根據頻率分步直方圖和構成以2為公比的等比數列,即可得解;
(2)由頻率分步直方圖算出相應的頻數即可填寫列聯表,再用
的計算公式運算即可;
(3)獲獎的概率為,隨機變量
,再根據二項分布即可求出其分布列與期望.
解:(1)由頻率分布直方圖可知,,
因為構成以2為公比的等比數列,所以
,解得
,
所以,
.
故,
,
.
(2)獲獎的人數為人,
因為參考的文科生與理科生人數之比為,所以400人中文科生的數量為
,理科生的數量為
.
由表可知,獲獎的文科生有6人,所以獲獎的理科生有人,不獲獎的文科生有
人.
于是可以得到列聯表如下:
文科生 | 理科生 | 合計 | |
獲獎 | 6 | 14 | 20 |
不獲獎 | 74 | 306 | 380 |
合計 | 80 | 320 | 400 |
所以在犯錯誤的概率不超過0.01的情況下,不能認為“獲得優秀作文”與“學生的文理科”有關.
(3)由(2)可知,獲獎的概率為,
的可能取值為0,1,2,
,
,
,
分布列如下:
0 | 1 | 2 | |
數學期望為.
科目:高中數學 來源: 題型:
【題目】設是圓
上的任意一點,
是過點
且與
軸垂直的直線,
是直線
與
軸的交點,點
在直線
上,且滿足
.當點
在圓
上運動時,記點
的軌跡為曲線
.
(1)求曲線的方程;
(2)已知直線與曲線
交于
,
兩點,點
關于
軸的對稱點為
,證明:直線
過定點
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知 是平面內凸三十五邊形的35個頂點,且
中任何兩點之間的距離不小于
. 證明:從這35個點中可以選出五個點,使得這五個點中任意兩點之間的距離不小于3.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】一布袋中裝有個小球,甲,乙兩個同學輪流且不放回的抓球,每次最少抓一個球,最多抓三個球,規定:由乙先抓,且誰抓到最后一個球誰贏,那么以下推斷中正確的是( )
A. 若,則乙有必贏的策略B. 若
,則甲有必贏的策略
C. 若,則甲有必贏的策略D. 若
,則乙有必贏的策略
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(本小題滿分12分,(1)小問7分,(2)小問5分)
設函數
(1)若在
處取得極值,確定
的值,并求此時曲線
在點
處的切線方程;
(2)若在
上為減函數,求
的取值范圍。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】甲乙兩人進行某種游戲比賽,規定:每一次勝者得1分,負者得0分;當其中一人的得分比另一人的得分多2分時即贏得這場游戲,比賽隨之結束.同時規定:比賽次數最多不超過20次,即經20次比賽,得分多者贏得這場游戲,得分相等為和局.已知每次比賽甲獲勝的概率為可,乙獲勝的概率為
.假定各次比賽的結果是相互獨立的,比賽經
次結束.求
的期望
的變化范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設等比數列{}的公比為 q(q > 0,q = 1),前 n 項和為 Sn,且 2a1a3 = a4,數列{
}的前 n 項和 Tn 滿足2Tn = n(bn - 1),n ∈N*,b2 = 1.
(1) 求數列 {},{
}的通項公式;
(2) 是否存在常數 t,使得 {Sn+ } 為等比數列?說明理由;
(3) 設 cn =,對于任意給定的正整數 k(k ≥2), 是否存在正整數 l,m(k < l < m), 使得 ck,c1,cm 成等差數列?若存在,求出 l,m(用 k 表示),若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某工廠生產某種型號的農機具零配件,為了預測今年7月份該型號農機具零配件的市場需求量,以合理安排生產,工廠對本年度1月份至6月份該型號農機具零配件的銷售量及銷售單價進行了調查,銷售單價(單位:元)和銷售量
(單位:千件)之間的6組數據如下表所示:
月份 | 1 | 2 | 3 | 4 | 5 | 6 |
銷售單價 | 11.1 | 9.1 | 9.4 | 10.2 | 8.8 | 11.4 |
銷售量 | 2.5 | 3.1 | 3 | 2.8 | 3.2 | 2.4 |
(1)根據1至6月份的數據,求關于
的線性回歸方程(系數精確到0.01);
(2)結合(1)中的線性回歸方程,假設該型號農機具零配件的生產成本為每件3元,那么工廠如何制定7月份的銷售單價,才能使該月利潤達到最大?(計算結果精確到0.1)
參考公式:回歸直線方程,
參考數據:,
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com