(本小題滿分14分)已知橢圓的左右焦點分別為F1、F2,點P在橢圓C上,且PF1⊥F1F2, |PF1|=
,
|PF2|=
.
(I)求橢圓C的方程;
(II)若直線L過圓的圓心M交橢圓于A、B兩點,且A、B關(guān)于點M對稱,求直線L的方程。
解法一:(Ⅰ)因為點P在橢圓C上,所以,a=3. …….2分
在Rt△PF1F2中,故橢圓的半焦距c=
,
從而b2=a2-c2=4, ………………………………………….5分
所以橢圓C的方程為=1
………………………………………….7分
(Ⅱ)設(shè)A,B的坐標分別為(x1,y1)、(x2,y2). 由圓的方程為(x+2)2+(y-1)2=5,所以圓心M的坐標為(-2,1). 從而可設(shè)直線l的方程為 y=k(x+2)+1, ….9分
代入橢圓C的方程得 (4+9k2)x2+(36k2+18k)x+36k2+36k-27=0. ….12分
因為A,B關(guān)于點M對稱.
所以 解得
,
所以直線l的方程為 即8x-9y+25=0. (經(jīng)檢驗,符合題意) ….14分
解法二:(Ⅰ)同解法一.
(Ⅱ)已知圓的方程為(x+2)2+(y-1)2=5,所以圓心M的坐標為(-2,1).
設(shè)A,B的坐標分別為(x1,y1),(x2,y2).由題意x1x2且
①
②
由①-②得 ③
因為A、B關(guān)于點M對稱,所以x1+ x2=-4, y1+ y2=2,
代入③得=
,即直線l的斜率為
,
所以直線l的方程為y-1=(x+2),即8x-9y+25=0.(經(jīng)檢驗,所求直線方程符合題意.)
【解析】略
科目:高中數(shù)學 來源: 題型:
3 |
π |
4 |
π |
4 |
π |
2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
(本小題滿分14分)設(shè)橢圓C1的方程為(a>b>0),曲線C2的方程為y=
,且曲線C1與C2在第一象限內(nèi)只有一個公共點P。(1)試用a表示點P的坐標;(2)設(shè)A、B是橢圓C1的兩個焦點,當a變化時,求△ABP的面積函數(shù)S(a)的值域;(3)記min{y1,y2,……,yn}為y1,y2,……,yn中最小的一個。設(shè)g(a)是以橢圓C1的半焦距為邊長的正方形的面積,試求函數(shù)f(a)=min{g(a), S(a)}的表達式。
查看答案和解析>>
科目:高中數(shù)學 來源:2011年江西省撫州市教研室高二上學期期末數(shù)學理卷(A) 題型:解答題
(本小題滿分14分)
已知=2,點(
)在函數(shù)
的圖像上,其中
=
.
(1)證明:數(shù)列}是等比數(shù)列;
(2)設(shè),求
及數(shù)列{
}的通項公式;
(3)記,求數(shù)列{
}的前n項和
,并證明
.
查看答案和解析>>
科目:高中數(shù)學 來源:2015屆山東省威海市高一上學期期末考試數(shù)學試卷(解析版) 題型:解答題
(本小題滿分14分)
某網(wǎng)店對一應(yīng)季商品過去20天的銷售價格及銷售量進行了監(jiān)測統(tǒng)計發(fā)現(xiàn),第天(
)的銷售價格(單位:元)為
,第
天的銷售量為
,已知該商品成本為每件25元.
(Ⅰ)寫出銷售額關(guān)于第
天的函數(shù)關(guān)系式;
(Ⅱ)求該商品第7天的利潤;
(Ⅲ)該商品第幾天的利潤最大?并求出最大利潤.
查看答案和解析>>
科目:高中數(shù)學 來源:2011-2012學年廣東省高三下學期第一次月考文科數(shù)學試卷(解析版) 題型:解答題
(本小題滿分14分)已知的圖像在點
處的切線與直線
平行.
⑴ 求,
滿足的關(guān)系式;
⑵ 若上恒成立,求
的取值范圍;
⑶ 證明:(
)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com