已知函數f(x)=alnx+bx2圖象上點P(1,f(1))處的切線方程為2x-y-3=0.
(1)求函數y=f(x)的解析式;
(2)函數g(x)=f(x)+m-ln4,若方程g(x)=0在[,2]上恰有兩解,求實數m的取值范圍.
(1) f(x)=4lnx-x2 ;(2) 2<m≤4-2ln2.
解析試題分析:(1)由切線方程知圖像過,求導后,由題可得
,分別代函數與導函數表達式,解
可得;(2)由(1)得g(x)=4lnx-x2+m-ln4,即方程m=x2-4lnx+ln4,在
上恰有兩解,令
h(x)=x2-4lnx+ln4,由導函數得在上遞減,在(
,2)上遞增,可得2< h(x)≤4-2ln2,即2<m≤4-2ln2.
解:(1)∵點P(1,f(1))在切線2x-y-3=0上,
∴2-f(1)-3=0,
∴f(1)=-1,故b=-1, 2分
又,∴f ′(1)=a+2b=2,∴a=4,
∴f(x)=4lnx-x2. 4分
(2)g(x)=4lnx-x2+m-ln4
由g(x)=0得:m=x2-4lnx+ln4,此方程在上恰有兩解, 6分
記h(x)=x2-4lnx+ln4,則, 8分
由h′(x)=0得:x=∈
,
在 上,h′(x)<0,h(x)單調遞減,
在(,2)上,h′(x)>0,h(x)單調遞增, 10分
又h()=
+4+2ln2,h(
)=2-4ln
+2ln2=2,
h(2)=4-4ln2+2ln2=4-2ln2,
∵h()≥h(2),∴2<m≤4-2ln2. 13分
考點:導數的幾何意義,利用導數求函數的值域.
科目:高中數學 來源: 題型:解答題
已知函數f(x)=x2-(1+2a)x+aln x(a為常數).
(1)當a=-1時,求曲線y=f(x)在x=1處切線的方程;
(2)當a>0時,討論函數y=f(x)在區間(0,1)上的單調性,并寫出相應的單調區間.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知函數,
(
為常數).
(1)函數的圖象在點
處的切線與函數
的圖象相切,求實數
的值;
(2)若,
,
、
使得
成立,求滿足上述條件的最大整數
;
(3)當時,若對于區間
內的任意兩個不相等的實數
、
,都有
成立,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(2011•浙江)設函數f(x)=(x﹣a)2lnx,a∈R
(1)若x=e為y=f(x)的極值點,求實數a;
(2)求實數a的取值范圍,使得對任意的x∈(0,3e],恒有f(x)≤4e2成立.
注:e為自然對數的底數.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com