【題目】某學校參加某項競賽僅有一個名額,結合平時訓練成績,甲、乙兩名學生進入最后選拔,學校為此設計了如下選拔方案:設計6道測試題,若這6道題中,甲能正確解答其中的4道,乙能正確解答每個題目的概率均為.假設甲、乙兩名學生解答每道測試題都相互獨立,互不影響,現甲、乙從這6道測試題中分別隨機抽取3題進行解答.
(1)求甲、乙兩名學生共答對2道測試題的概率;
(2)從數學期望和方差的角度分析,應選拔哪個學生代表學校參加競賽?
【答案】(1) .
(2) 應選拔甲學生代表學校參加競賽.
【解析】分析:(1)利用互斥事件概率加法公式、n次獨立重復試驗中事件A恰好發生k次概率計算公式能求出甲、乙兩名學生共答對2個問題的概率;
(2)設學生甲答對的題數為X,則X的所有可能取值為1,2,3,分別求出相應的概率,從而求出E(X),D(X)=X),設學生乙答對題數為Y,則Y所有可能的取值為0,1,2,3,由題意知Y~B(3,),從而求出E(Y),D(X),由E(X)=E(Y),D(X)<D(Y),得到甲代表學校參加競賽的可能性更大.
詳解:(1)依題設記甲、乙兩名學生共答對2道測試題的概率為P,
則.
(2)設學生甲答對的題數為,則
的所有可能取值為1,2,3.
,
,
.
X | 1 | 2 | 3 |
P |
的分布列為:
所以,
.
設學生乙答對的題數為,則
的所有可能取值為0,1,2,3.則
.
所以,
.
因為,
,即甲、乙答對的題目數一樣,但甲較穩定,
所以應選拔甲學生代表學校參加競賽.
科目:高中數學 來源: 題型:
【題目】已知直線l的參數方程是 (t是參數),以坐標原點為極點,x軸的正半軸為極軸建立極坐標系.曲線C的極坐標方程為ρ=4cos(θ+
).
(1)判斷直線l與曲線C的位置關系;
(2)過直線l上的點作曲線C的切線,求切線長的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系中,以坐標原點O為極點,x軸的非負半軸為極軸建立極坐標系.已知點M的極坐標為 ,圓C的參數方程為
(α為參數).
(1)直線l過M且與圓C相切,求直線l的極坐標方程;
(2)過點P(0,m)且斜率為 的直線l'與圓C交于A,B兩點,若|PA||PB|=6,求實數m的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓經過
兩點,且圓心
在直線
上.
(1)求圓的方程;
(2)已知過點的直線
與圓
相交截得的弦長為
,求直線
的方程;
(3)已知點,在平面內是否存在異于點
的定點
,對于圓
上的任意動點
,都有
為定值?若存在求出定點
的坐標,若不存在說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(Ⅰ)已知函數f(x)=|2x﹣3|﹣2|x|,若關于x不等式f(x)≤|a+2|+2a恒成立,求實數a的取值范圍; (Ⅱ)已知正數x,y,z滿足2x+y+z=1,求證 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】給出下列四個命題:①命題“若,則
”的逆否命題為假命題:
②命題“若,則
”的否命題是“若
,則
”;
③若“”為真命題,“
”為假命題,則
為真命題,
為假命題;
④函數有極值的充要條件是
或
.
其中正確的個數有( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,棱長為1(單位:)的正方體木塊經過適當切割,得到幾何體
,已知幾何體
由兩個底面相同的正四棱錐組成,底面
平行于正方體的下底面,且各頂點均在正方體的面上,則幾何體
體積的取值范圍是________(單位:
).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
在平面直角坐標系中,直線
的參數方程為
(
為參數),直線
與曲線
:
交于
,
兩點.
(Ⅰ)求的長;
(Ⅱ)在以為極點,
軸的正半軸為極軸建立的極坐標系中,設點
的極坐標為
,求點
到線段
中點
的距離.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com