日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情

已知圓Cx2+(y1)2=5,直線lmxy+1m=0

1)求證:對,直線l與圓C總有兩個不同的交點;

2)設l與圓C交于A、B兩點,若,求l的傾角;

(3)求弦AB的中點M的軌跡方程;

4)若定點P(1,1)分弦AB,求此時直線l的方程.

 

答案:
解析:

(1)由已知ly-1=m(x-1),∴直線l恒過定點P(1,1).

∵12+(1-1)2=1<5,

P在圓C內,則直線l與圓C總有兩個不同的交點.

(2)設A(x1,y2),B(x2y2),則x1,x2為方程的兩實根,

    ∵,∴,∴m2=3,.

l的傾角為.

(3)設M的坐標為(x,y),連結CM,CP,∵C(0,1),P(1,1),,∴,

整理得軌跡方程為:

(4)∵,∴,∴,又∵,∴,,解方程(1+m2)x2-2m2x+m2-5=0

得:,∴,∵m=±1,

∴直線l的方程為:xy=0或x+y-2=0.

 


練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知圓C:x2+(y-
1
4
)2=
1
16
,動圓M與圓C外切,圓心M在x軸上方且圓M與x軸相切.
(I)求圓心軌跡M的曲線方程;
(II)若A(0,-2)為y軸上一定點,Q(t,0)為x軸上一動點,過點Q且與AQ垂直的直線與軌跡M交于D,B兩點(D在線段BQ上),直線AB與軌跡M交于E點,求
AD
AE
的最小值.

查看答案和解析>>

科目:高中數學 來源:數學教研室 題型:044

已知圓Cx2+(y1)2=5,直線lmxy+1m=0

1)求證:對,直線l與圓C總有兩個不同的交點;

2)設l與圓C交于AB兩點,若,求l的傾角;

(3)求弦AB的中點M的軌跡方程;

4)若定點P(1,1)分弦AB,求此時直線l的方程.

 

查看答案和解析>>

科目:高中數學 來源: 題型:044

已知圓Cx2+(y-1)2=1和圓C1(x-2)2+(y-1)2=1,現在構造一系列的圓C1C2C3…,Cn,…,使圓Cn+1Cn和圓C都相切,并都與Ox軸相切.

1)求圓Cn的半徑rn;(2)證明:兩個相鄰圓Cn-1Cn在切點間的公切線長為;

3)求和

查看答案和解析>>

科目:高中數學 來源:2010-2011年河南省許昌高一下學期第四次五校聯考數學試卷 題型:解答題

((本小題滿分12分)

 已知圓Cx2+(y-1)2 =5,直線lmx-y+l-m=0,

 (1)求證:對任意,直線l與圓C總有兩個不同的交點。

 (2)設l與圓C交于A、B兩點,若| AB | = ,求l的傾斜角;

 (3)求弦AB的中點M的軌跡方程;


 

查看答案和解析>>

科目:高中數學 來源:同步題 題型:解答題

已知圓C:x2+(y-1)2=5,直線l:mx-y+1-m=0。
(Ⅰ)求證:對m∈R,直線l與圓C總有兩個不同交點;
(Ⅱ)設l與圓C交與不同兩點A、B,求弦AB的中點M的軌跡方程;
(Ⅲ)若定點P(1,1)分弦AB為,求此時直線l的方程。

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 午夜在线视频免费观看 | 一级片av | 国内久久精品 | 特级理论片| 日韩精品一区在线 | 国产在线一区二区三区 | 中文字幕一区二区在线观看 | 蜜桃视频一区二区三区 | 久久国产精品久久久久久 | 逼逼逼网| 一区二区日本 | 欧美a在线观看 | 国产主播一区 | 国产精品日韩欧美一区二区三区 | 久久久久国产精品午夜一区 | 午夜精品久久久 | 一区二区三区四区在线播放 | 在线观看成人网 | 久久蜜桃视频 | 久久精品日韩 | 欧美国产日韩一区 | 日韩精品区 | 亚洲最色视频 | 一区二区久久 | 日日噜噜噜夜夜爽爽狠狠小说 | 欧美大片在线观看 | 国产高清精品一区 | 国产极品一区二区 | 欧美大片一区二区 | 91天堂| 日本在线一二 | 免费亚洲精品 | 成年人福利 | 精品无码久久久久久国产 | 婷婷综合五月 | 色综久久 | 妞干网在线视频 | 福利视频一区二区 | 午夜免费电影 | 最新日韩av | 日韩精品123 |