日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

設(shè)M是由滿足下列條件的函數(shù)f(x)構(gòu)成的集合:①方程f(x)-x=0有實(shí)根;②函數(shù)f(x)的導(dǎo)數(shù)f′(x)滿足0<f′(x)<1.
(1)若函數(shù)f(x)為集合M中的任意一個(gè)元素,證明:方程f(x)-x=0只有一個(gè)實(shí)根;
(2)判斷函數(shù)g(x)=是否是集合M中的元素,并說(shuō)明理由;
(3)設(shè)函數(shù)f(x)為集合M中的任意一個(gè)元素,對(duì)于定義域中任意α,β,證明|f(α)-f(β)|≤|α-β|
【答案】分析:(1)構(gòu)造函數(shù)h(x)=f(x)-x,由已知可判斷h(x)是單調(diào)遞減函數(shù),由單調(diào)函數(shù)至多有一個(gè)零點(diǎn),及方程f(x)-x=0有實(shí)根,可證得答案;
(2)結(jié)合函數(shù)g(x)=,分析條件:①方程g(x)-x=0有實(shí)根;②函數(shù)g(x)的導(dǎo)數(shù)g′(x)滿足0<g′(x)<1.兩個(gè)條件是否滿足,可得結(jié)論;
(3)不妨設(shè)α≤β,由(1)證得函數(shù)的單調(diào)性,易證明0≤f(β)-f(α)≤β-α,進(jìn)而根據(jù)絕對(duì)值的定義得到結(jié)論.
解答:證明::(1)令h(x)=f(x)-x,則h′(x)=f′(x)-1<0,故h(x)是單調(diào)遞減函數(shù),
所以,方程h(x)=0,即f(x)-x=0至多有一解,
又由題設(shè)①知方程f(x)-x=0有實(shí)數(shù)根,
所以,方程f(x)-x=0有且只有一個(gè)實(shí)數(shù)根…..(4分)
(2)易知,g′(x)=-,則0<g′(x)<1,滿足條件②;
令F(x)=g(x)-x=
則F(e)==>0,F(xiàn)(e2)=<0,…..(7分)
又F(x)在區(qū)間[e,e2]上連續(xù),所以F(x)在[e,e2]上存在零點(diǎn)x
即方程g(x)-x有實(shí)數(shù)根x∈[e,e2],故g(x)滿足條件①,
綜上可知,g(x)∈M…(9分)
(Ⅲ)不妨設(shè)α≤β,∵f′(x)>0,∴f(x)單調(diào)遞增,
∴f(α)≤f(β),即f(β)-f(α)≥0,,
令h(x)=f(x)-x,則h′(x)=f′(x)-1<0,故h(x)是單調(diào)遞減函數(shù),
∴f(β)-β≤f(α)-α,即f(β)-f(α)≤β-α,
∴0≤f(β)-f(α)≤β-α,
則有|f(α)-f(β)|≤|α-β|.…..….(13分)
點(diǎn)評(píng):本題是函數(shù)與方程的綜合應(yīng)用,是函數(shù)零點(diǎn)與方程根關(guān)系的綜合應(yīng)用,其中利用導(dǎo)數(shù)法分析函數(shù)的單調(diào)性,進(jìn)而判斷函數(shù)零點(diǎn)的個(gè)數(shù)及對(duì)應(yīng)方程根的個(gè)數(shù)難度較大.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)M是由滿足下列條件的函數(shù)f(x)構(gòu)成的集合:“①方程f(x)-x=0有實(shí)數(shù)根;②函數(shù)f(x)的導(dǎo)數(shù)f′(x)滿足0<f′(x)<1”.
(Ⅰ)判斷函數(shù)f(x)=
x
2
+
sinx
4
是否是集合M中的元素,并說(shuō)明理由;
(Ⅱ)集合M中的元素f(x)具有下面的性質(zhì):若f(x)的定義域?yàn)镈,則對(duì)于任意[m,n]⊆D,都存在x0∈[m,n],使得等式f(n)-f(m)=(n-m)f'(x0)成立”,試用這一性質(zhì)證明:方程f(x)-x=0只有一個(gè)實(shí)數(shù)根;
(Ⅲ)設(shè)x1是方程f(x)-x=0的實(shí)數(shù)根,求證:對(duì)于f(x)定義域中任意的x2、x3,當(dāng)|x2-x1|<1,且|x3-x1|<1時(shí),|f(x3)-f(x2)|<2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)M是由滿足下列條件的函數(shù)f(x)構(gòu)成的集合:“①方程f(x)-x=0有實(shí)數(shù)根;②函數(shù)f(x)的導(dǎo)數(shù)f(x)滿足
0<f(x)<1”
(I)證明:函數(shù)f(x)=
3x
4
+
x3
3
(0≤x<
1
2
)是集合M中的元素;
(II)證明:函數(shù)f(x)=
3x
4
+
x3
3
(0≤x
1
2
)具有下面的性質(zhì):對(duì)于任意[m,n]⊆[0,
1
2
),都存在xo∈(m,n),使得等式f(n)-f(m)=(n-m)f(xo)成立.
(III)若集合M中的元素f(x)具有下面的性質(zhì):若f(x)的定義域?yàn)镈,則對(duì)于任意[m,n]⊆D,都存在xo∈(m,n),使得等式f(n)-f(m)=(n-m)f(xo)成立.試用這一性質(zhì)證明:對(duì)集合M中的任一元素f(x),方程f(x)-x=0只有一個(gè)實(shí)數(shù)根.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)M是由滿足下列條件的函數(shù)f(x)構(gòu)成的集合:“①方程f(x)-x=0有實(shí)數(shù)根;②函數(shù)f(x)的導(dǎo)數(shù)f′(x)滿足0<f′(x)<1.”
(Ⅰ)判斷函數(shù)f(x)=
x
2
+
sinx
4
是否是集合M中的元素,并說(shuō)明理由;
(Ⅱ)令g(x)=f(x)-x,判斷g(x)的單調(diào)性(f(x)∈M);
(Ⅲ)設(shè)x1<x2,證明:0<f(x2)-f(x1)<x2-x1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)M是由滿足下列條件的函數(shù)f(x)構(gòu)成的集合:(1)方程f(x)-x=0有實(shí)數(shù)解;(2)函數(shù)f(x)的導(dǎo)數(shù)f′(x)滿足0<f′(x)<1.給出如下函數(shù):
f(x)=
x
2
+
sinx
4

②f(x)=x+tanx,x∈(-
π
2
π
2
)

③f(x)=log3x+1,x∈[1,+∞).
其中是集合M中的元素的有
①③
①③
.(只需填寫函數(shù)的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•江西模擬)設(shè)M是由滿足下列條件的函數(shù)f(x)構(gòu)成的集合:①方程f(x)-x=0有實(shí)根;②函數(shù)f(x)的導(dǎo)數(shù)f′(x)滿足0<f′(x)<1.
(1)若函數(shù)f(x)為集合M中的任意一個(gè)元素,證明:方程f(x)-x=0只有一個(gè)實(shí)根;
(2)判斷函數(shù)g(x)=
x
2
-
lnx
2
+3(x>1)
是否是集合M中的元素,并說(shuō)明理由;
(3)設(shè)函數(shù)f(x)為集合M中的任意一個(gè)元素,對(duì)于定義域中任意α,β,證明|f(α)-f(β)|≤|α-β|

查看答案和解析>>

同步練習(xí)冊(cè)答案
主站蜘蛛池模板: 亚洲欧洲精品成人久久奇米网 | 91人人澡人人爽 | 日韩国产在线 | a免费在线观看 | 无码国模国产在线观看 | 青草av在线 | 看免费av| 蜜桃色网| 成人久久久精品乱码一区二区三区 | 久久兔费看a级 | 免费看国产一级特黄aaaa大片 | 伊人免费视频 | 色接久久 | 一区二区三区久久 | 欧美成人免费在线视频 | 99热热热 | 在线中文日韩 | 久久逼逼 | 亚洲中国精品精华液 | 色婷婷一区 | 久热热| 91在线视频免费观看 | 日韩国产欧美视频 | 超黄网站| 日韩一区二区在线观看视频 | 国产欧美精品一区二区色综合 | 日本一区二区不卡视频 | 在线国产一区二区 | 色婷婷一区 | 欧美精品综合 | 国产精品一区二 | 日韩在线精品强乱中文字幕 | 一级黄色大片视频 | 日韩一区二区福利 | 欧美日韩在线二区 | 久久精品91 | 免费观看一区二区三区 | 美女一区二区三区在线观看 | 五月激情综合婷婷 | 日韩成人在线观看 | 九九免费观看全部免费视频 |