【題目】在直角坐標系xOy中以O為極點,x軸正半軸為極軸建立坐標系.圓C1 , 直線C2的極坐標方程分別為ρ=4sinθ,ρcos( )=2
.
(1)求C1與C2交點的極坐標;
(2)設P為C1的圓心,Q為C1與C2交點連線的中點,已知直線PQ的參數方程為 (t∈R為參數),求a,b的值.
【答案】
(1)解:圓C1,直線C2的直角坐標方程分別為 x2+(y﹣2)2=4,x+y﹣4=0,
解 得
或
,
∴C1與C2交點的極坐標為(4, ).(2
,
).
(2)解:由(1)得,P與Q點的坐標分別為(0,2),(1,3),
故直線PQ的直角坐標方程為x﹣y+2=0,
由參數方程可得y= x﹣
+1,
∴ ,
解得a=﹣1,b=2.
【解析】(1)先將圓C1 , 直線C2化成直角坐標方程,再聯立方程組解出它們交點的直角坐標,最后化成極坐標即可;(2)由(1)得,P與Q點的坐標分別為(0,2),(1,3),從而直線PQ的直角坐標方程為x﹣y+2=0,由參數方程可得y= x﹣
+1,從而構造關于a,b的方程組,解得a,b的值.
科目:高中數學 來源: 題型:
【題目】拋物線C1: 的焦點與雙曲線C2:
的右焦點的連線交C1于第一象限的點M.若C1在點M處的切線平行于C2的一條漸近線,則p=( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列說法正確的個數有( )
①用刻畫回歸效果,當
越大時,模型的擬合效果越差;反之,則越好;
②命題“,
”的否定是“
,
”;
③若回歸直線的斜率估計值是,樣本點的中心為
,則回歸直線方程是
;
④綜合法證明數學問題是“由因索果”,分析法證明數學問題是“執果索因”。
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設是某港口水的深度
(單位:
)關于時間
的函數,其中
.下表是該港口某一天從
時至
時記錄的時間
與水深
的關系:
t | 0 | 3 | 6 | 9 | 12 | 15 | 18 | 21 | 24 |
y | 5.0 | 7.5 | 5.0 | 2.5 | 5.0 | 7.5 | 5.0 | 2.5 | 5.0 |
經長期觀察,函數的圖像可以近似看成函數
的圖像.最能近似表示表中數據間對應關系的函數是__________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,正方體的底面與正四面體的底面在同一平面α上,且AB∥CD,正方體的六個面所在的平面與直線CE,EF相交的平面個數分別記為m,n,那么m+n=( )
A.8
B.9
C.10
D.11
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】動圓M與定圓C:x2+y2+4x=0相外切,且與直線l:x-2=0相切,則動圓M的圓心的軌跡方程為( )
A. y2-12x+12=0 B. y2+12x-12=0
C. y2+8x=0 D. y2-8x=0
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,直線的參數方程為
(其中
為參數).現以坐標原點為極點,
軸的非負半軸為極軸建立極坐標標系,曲線
的極坐標方程為
.
(1)寫出直線的普通方程和曲線
的直角坐標方程;(2)求直線
被曲線
截得的線段的長度.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com