【題目】設(shè)拋物線的焦點為
,點
是
上一點,且線段
的中點坐標(biāo)為
.
(1)求拋物線的標(biāo)準(zhǔn)方程;
(2)若,
為拋物線
上的兩個動點(異于點
),且
,求點
的橫坐標(biāo)的取值范圍.
【答案】(1);(2)
.
【解析】
(1)設(shè)點,由線段
的中點坐標(biāo)可得出點
的坐標(biāo),再代入拋物線
的標(biāo)準(zhǔn)方程可得出關(guān)于
的方程,解出正數(shù)
的值,即可得出拋物線
的標(biāo)準(zhǔn)方程;
(2)設(shè)點、
,求出直線
的斜率,進(jìn)而求出直線
的方程,將直線
的方程與拋物線
的標(biāo)準(zhǔn)方程聯(lián)立,可得出
,可知該方程有解,由
可求得
的取值范圍,并進(jìn)行檢驗,由此可得出點
的橫坐標(biāo)的取值范圍.
(1)依題意得,設(shè)
,由
的中點坐標(biāo)為
,得
,
即,
,所以
,得
,即
,
所以拋物線的標(biāo)準(zhǔn)方程為
;
(2)由題意知,設(shè)
,
,則
,
因為,所以
,
所在直線方程為
,
聯(lián)立,
因為,得
,即
,
因為,即
,故
或
.
經(jīng)檢驗,當(dāng)時,不滿足題意;
所以點的橫坐標(biāo)的取值范圍是
.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓過點
,
分別為橢圓C的左、右焦點且
.
(1)求橢圓C的方程;
(2)過P點的直線與橢圓C有且只有一個公共點,直線
平行于OP(O為原點),且與橢圓C交于兩點A、B,與直線
交于點M(M介于A、B兩點之間).
(i)當(dāng)面積最大時,求
的方程;
(ii)求證:,并判斷
,
的斜率是否可以按某種順序構(gòu)成等比數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知橢圓,點
是它的兩個頂點,過原點且斜率為
的直線
與線段
相交于點
,且與橢圓相交于
兩點.
(1)若,求
的值;
(2)求四邊形面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形的邊長為1,E,F分別是
,
的中點,
交EF于點D,現(xiàn)沿SE,SF及EF把這個正方形折成一個四面體,使
,
,
三點重合,重合后的點記為G,則在四面體
中必有( )
A.平面EFG
B.設(shè)線段SF的中點為H,則平面SGE
C.四面體的體積為
D.四面體的外接球的表面積為
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左、右焦點分別為
,
且
,點
在橢圓內(nèi)部,點
在橢圓上,則以下說法正確的是( )
A.的最小值為
B.橢圓的短軸長可能為2
C.橢圓的離心率的取值范圍為
D.若,則橢圓
的長軸長為
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:
的離心率為
,焦距為
.
(1)求的方程;
(2)若斜率為的直線
與橢圓
交于
,
兩點(點
,
均在第一象限),
為坐標(biāo)原點.
①證明:直線的斜率依次成等比數(shù)列.
②若與
關(guān)于
軸對稱,證明:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線與坐標(biāo)軸的交點都在圓C上.
(1)求圓C的方程;
(2)若圓C與直線交于A,B兩點,且
,求a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為徹底打贏脫貧攻堅戰(zhàn),2020年春,某市政府投入資金幫扶某農(nóng)戶種植蔬菜大棚脫貧致富,若該農(nóng)戶計劃種植冬瓜和茄子,總面積不超過15畝,幫扶資金不超過4萬元,冬瓜每畝產(chǎn)量10 000斤,成本2000元,每斤售價0.5元,茄子每畝產(chǎn)量5000斤,成本3000元,每斤售價1.4元,則該農(nóng)戶種植冬瓜和茄子利潤的最大值為( )
A.4萬元B.5.5萬元C.6.5萬元D.10萬元
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某志愿者服務(wù)網(wǎng)站在線招募志愿者,當(dāng)報名人數(shù)超過計劃招募人數(shù)時,將采用隨機抽取的方法招募志愿者,如表記錄了A,B,C,D四個項目最終的招募情況,其中有兩個數(shù)據(jù)模糊,記為a,b.
甲同學(xué)報名參加了這四個志愿者服務(wù)項目,記ξ為甲同學(xué)最終被招募的項目個數(shù),已知P(ξ=0),P(ξ=4)
.
(Ⅰ)求甲同學(xué)至多獲得三個項目招募的概率;
(Ⅱ)求a,b的值;
(Ⅲ)假設(shè)有十名報了項目A的志愿者(不包含甲)調(diào)整到項目D,試判斷Eξ如何變化(結(jié)論不要求證明).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com