日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情

設函數f(x)=x|x-a|+b
(1) 求證:f(x)為奇函數的充要條件是a2+b2=0;
(2)設常數b<2數學公式-3,求對任意x∈[0,1],f(x)<0的充要條件.

解:(1)充分性:若a2+b2=0∴a=b=0
∴f(x)=x|x|對任意的x∈R都有f(-x)+f(x)=0
∴f(x)為奇函數,故充分性成立.
必要性:若f(x)為奇函數
則對任意的x∈R都有f(-x)+f(x)=0恒成立,
即-x|-x-a|+b+x|x-a|+b=0
令x=0,得b=0;令x=a,得a=0.∴a2+b2=0
(2)由b<2 -3<0,當x=0時a取任意實數不等式恒成立
當0<x≤1時f(x)<0恒成立,也即x+<a<x-恒成立
令g(x)=x+在0<x≤1上單調遞增,∴a>gmax(x)=g(1)=1+b
令h(x)=x-,則h(x)在(0,]上單調遞減,[,+∞)單調遞增
1°當b<-1時h(x)=x-在0<x≤1上單調遞減
∴a<hmin(x)=h(1)=1-b.∴1+b<a<1-b.
2°當-1≤b<2 -3時,h(x)=x-≥2
∴a<hmin(x)=2 ,∴1+b<a<2
分析:(1)欲證f(x)為奇函數的充要條件是a2+b2=0,須證兩個方面:①充分性:若a2+b2=0?f(x)為奇函數,②必要性:若f(x)為奇函數?a2+b2=0.
(2)分類討論:①當x=0時a取任意實數不等式恒成立;②當0<x≤1時f(x)<0恒成立,再轉化為x+<a<x-恒成立問題,下面利用函數g(x)=x+的最值即可求得實數a的取值范圍.
點評:本小題主要考查充要條件、函數單調性的應用、函數奇偶性的應用、不等式的解法等基礎知識,考查運算求解能力,化歸與轉化思想.屬于基礎題.證明充要條件的方法是:如果能從命題p推出命題q,且能從命題q推出命題p,那么 條件q與條件p互為充分必要條件,簡稱充要條件.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

設函數f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數y=f(x)圖象上的點到直線x-y-3=0距離的最小值為
2
,求a的值;
(2)關于x的不等式(x-1)2>f(x)的解集中的整數恰有3個,求實數a的取值范圍;
(3)對于函數f(x)與g(x)定義域上的任意實數x,若存在常數k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數f(x)與g(x)的“分界線”.設a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

設函數f(x)的定義域為A,若存在非零實數t,使得對于任意x∈C(C⊆A),有x+t∈A,且f(x+t)≤f(x),則稱f(x)為C上的t低調函數.如果定義域為[0,+∞)的函數f(x)=-|x-m2|+m2,且 f(x)為[0,+∞)上的10低調函數,那么實數m的取值范圍是(  )
A、[-5,5]
B、[-
5
5
]
C、[-
10
10
]
D、[-
5
2
5
2
]

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•深圳一模)已知函數f(x)=
1
3
x3+bx2+cx+d
,設曲線y=f(x)在與x軸交點處的切線為y=4x-12,f′(x)為f(x)的導函數,且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設g(x)=x
f′(x)
 , m>0
,求函數g(x)在[0,m]上的最大值;
(3)設h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實數t的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

設函數f(x)是定義在R上的偶函數,且f(x+2)=f(x)恒成立;當x∈[0,1]時,f(x)=x3-4x+3.有下列命題:
f(-
3
4
) <f(
15
2
)

②當x∈[-1,0]時f(x)=x3+4x+3;
③f(x)(x≥0)的圖象與x軸的交點的橫坐標由小到大構成一個無窮等差數列;
④關于x的方程f(x)=|x|在x∈[-3,4]上有7個不同的根.
其中真命題的個數為(  )

查看答案和解析>>

科目:高中數學 來源:徐州模擬 題型:解答題

設函數f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數y=f(x)圖象上的點到直線x-y-3=0距離的最小值為2
2
,求a的值;
(2)關于x的不等式(x-1)2>f(x)的解集中的整數恰有3個,求實數a的取值范圍;
(3)對于函數f(x)與g(x)定義域上的任意實數x,若存在常數k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數f(x)與g(x)的“分界線”.設a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 少妇一级淫片免费放 | 一区二区三区在线观看免费 | 日韩高清一区 | 亚洲国产视频一区 | 成人免费一区二区三区视频网站 | 一区二区三区回区在观看免费视频 | 一级黄色录像视频 | 亚洲欧洲一区二区三区 | 中文无码久久精品 | 国产视频一视频二 | 9l蝌蚪porny中文自拍 | 成人免费一区 | 日本小视频网站 | 精品亚洲一区二区三区 | 一区网站 | 成人国产精品久久久 | 日韩欧美在线播放视频 | 青青草91视频 | 日本成人中文字幕 | 久久综合狠狠综合久久综合88 | 欧美a√| 99热免费在线 | 黄色网址视频在线观看 | 亚洲男人的天堂网站 | 成人午夜精品一区二区三区 | www.狠狠干 | 免费观看毛片 | 狠狠夜夜 | 毛茸茸成熟亚洲人 | 中国免费看的片 | 国产精品理论在线观看 | 久久这里有精品 | 婷婷色在线 | 日本久久精品一区二区 | 日本在线观看 | 国产一区二区精彩视频 | 伊人网站在线 | 91在线免费看 | 国产片三级91 | 在线视频日本 | 久久国产精品毛片 |