分析 (1)利用平方關系即可得出普通方程.
(2)由ρ=$\frac{9}{\sqrt{2}sin(θ+\frac{π}{4})}$,展開化為ρsin θ+ρcos θ=9.利用互化公式可得曲線C的直角坐標方程.求出圓(x-1)2+y2=1的圓心(1,0)到直線x+y=9的距離d,進而得出最小值.
解答 解:(1)由$\left\{\begin{array}{l}{x=1+cosα}\\{y=sinα}\end{array}\right.$利用平方關系可得:得點P的軌跡方程(x-1)2+y2=1.
(2)由ρ=$\frac{9}{\sqrt{2}sin(θ+\frac{π}{4})}$,化為ρ=$\frac{9}{sinθ+cosθ}$,
∴ρsin θ+ρcos θ=9.
∴曲線C的直角坐標方程為x+y=9.
圓(x-1)2+y2=1的圓心(1,0)到直線x+y=9的距離d=$\frac{|1-9|}{\sqrt{2}}$=4$\sqrt{2}$,
∴|PQ|min=4$\sqrt{2}$-1.
點評 本題考查了參數方程化為普通方程、極坐標方程化為直角坐標方程、點到直線的距離公式,考查了推理能力與計算能力,屬于中檔題.
科目:高中數學 來源: 題型:選擇題
A. | $(\frac{1}{5},1)∪(1,\frac{9}{2})$ | B. | $(0,\frac{1}{7})∪(1,\frac{9}{2})$ | C. | $(\frac{1}{7},\frac{1}{2})∪(3,9)$ | D. | $(\frac{1}{7},\frac{1}{3})∪(5,9)$ |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
休閑方式 性別 | 逛街 | 上網 | 合計 |
男 | 10 | 50 | 60 |
女 | 10 | 10 | 20 |
合計 | 20 | 60 | 80 |
P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com