日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

【題目】四棱錐PABCD中平面PAD⊥平面ABCDABCDABADMAD中點,PAPDADAB2CD2

1)求證:平面PMB⊥平面PAC

2)求二面角APCD的余弦值.

【答案】1)證明見詳解;(2

【解析】

1)由直線垂直于,可得線面垂直,再由線面垂直推證面面垂直即可;

2)以為坐標(biāo)原點,建立空間直角坐標(biāo)系,通過求解兩平面法向量的夾角,從而求得對應(yīng)二面角的余弦值.

1)證明:∵PAPDMAD中點,

PMAD

又平面PAD⊥平面ABCD,且平面PAD平面ABCDAD

PM⊥平面ABCD

又因為平面

.

由已知可得,tan

∴∠ABM=∠DAC

又∵

MBAC

平面

故可得平面

平面

∴平面PMB⊥平面PAC,即證.

2)以M為坐標(biāo)原點,分別以MDMPx軸與z軸,

建立空間直角坐標(biāo)系,如下圖所示:

A(﹣1,0,0),D1,0,0),C1,1,0),P0,0,2).

設(shè)平面PAC的一個法向量為

,可得

z11,得

設(shè)平面PDC的一個法向量

,可得

z21,得

設(shè)所求二面角為θ,又為銳二面角,

.

二面角APCD的余弦值為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在多面體中,四邊形為矩形,均為等邊三角形,

)過作截面與線段交于點,使得平面,試確定點的位置,并予以證明;

)在()的條件下,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】ABC中,角ABC的對邊分別為abc,滿足acosB+bcosA=2ccosC

1)求角C的大小;

2)若ABC的周長為3,求ABC的內(nèi)切圓面積S的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了慶祝中華人民共和國成立周年,某車間內(nèi)舉行生產(chǎn)比賽,由甲乙兩組內(nèi)各隨機選取名技工,在單位時間生產(chǎn)同一種零件,其生產(chǎn)的合格零件數(shù)的莖葉圖如下:

已知兩組所選技工生產(chǎn)的合格零件的平均數(shù)均為.

1)分別求出的值;

2)分別求出甲乙兩組技工在單位時間內(nèi)加工的合格零件的方差,并由此估計兩組技工的生產(chǎn)水平;

3)若單位時間內(nèi)生產(chǎn)的合格零件個數(shù)不小于平均數(shù)的技工即為生產(chǎn)能手,根據(jù)以上數(shù)據(jù),能否認(rèn)為該車間50%以上的技工都是生產(chǎn)能手?

(注:方差,其中為數(shù)據(jù)的平均數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

①當(dāng)時,函數(shù)______零點;

②若函數(shù)的值域為,則實數(shù)的取值范圍是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)為自然對數(shù)的底數(shù).

1)當(dāng)時,判斷零點個數(shù)并求出零點;

2)若函數(shù)存在兩個不同的極值點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等腰梯形ABCD中,AB//CD,∠ABC=BC=CD=CE=1EC⊥平面ABCDEFACP是線段EF上的動點

1)求證:平面BCE⊥平面ACEF

2)求平面PAB與平面BCE所成銳二面角的最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)axx2g(x)xlnaa>1.

(1)求證:函數(shù)F(x)f(x)g(x)(0,+∞)上單調(diào)遞增;

(2)若函數(shù)y3有四個零點,求b的取值范圍;

(3)若對于任意的x1x2∈[1,1]時,都有|F(x2)F(x1)|≤e22恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在極坐標(biāo)系中,直線的方程為2ρcosθ+5ρsinθ80,曲線E的方程為ρ4cosθ

1)以極點O為直角坐標(biāo)原點,極軸為x軸正半軸建立平面直角坐標(biāo)系,分別寫出直線l與曲線E的直角坐標(biāo)方程;

2)設(shè)直線l與曲線E交于AB兩點,點C在曲線E上,求△ABC面積的最大值,并求此時點C的直角坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案
主站蜘蛛池模板: 国产高清视频在线 | 网址你懂的在线观看 | 日韩精品一区二区在线观看 | 欧美一区二区三区在线观看 | 欧美精品一区二区久久 | 日韩在线观看网站 | 99综合在线 | 久久久久久精 | 亚洲国产精品视频 | 成人免费毛片高清视频 | 久久99亚洲精品久久 | 色资源在线 | 九色在线观看视频 | 全免费一级毛片免费看 | www.操操操.com | 国产一级免费视频 | 91麻豆精品国产91久久久资源速度 | 免费黄色在线观看 | 国产在线观看一区二区三区 | 九九热精品免费视频 | 精品人伦一区二区三区蜜桃视频 | 91精品入口蜜桃 | 九九热视频精品在线 | 久久久网| 97久久香蕉国产线看观看 | 国产黄色大片 | 日日爱夜夜操 | 午夜激情免费在线观看 | 亚洲风情在线观看 | 青青草综合在线 | 亚洲成人av在线播放 | 91在线免费视频 | 精品永久免费 | 久久精品国产免费看久久精品 | 国产高清一区 | 91高清视频 | 欧美中文一区 | 国产一二三在线 | 国产精品第一国产精品 | 国产精品一区二区在线免费观看 | 日韩精品一区二区三区第95 |