日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

四棱錐P-ABCD中,側(cè)面PAD⊥底面ABCD,底面ABCD是邊長(zhǎng)為2的正方形,又PA=PD,∠APD=60°,E、G分別是BC、PE的中點(diǎn).

(1)求證:AD⊥PE;
(2)求二面角E-AD-G的正切值.

(1)AD⊥PE;(2).

解析試題分析:(1)證明線線垂直要通過(guò)線面垂直證明,題中所給側(cè)面PAD⊥底面ABCD是面面垂直,通過(guò)取AD的中點(diǎn)O,連結(jié)OP,OE,∵PA=PD,∴OP⊥AD,而OE⊥AD.,則AD⊥平面OPE.,從而能夠證出AD⊥PE..(2)求二面角E-AD-G的正切值可以通過(guò)兩種方法:①常規(guī)方法,作出二面角的平面角,并求出,取OE的中點(diǎn)F,連結(jié)FG,OG,則由(1)易知AD⊥OG,又OE⊥AD,∴∠GOE就是二面角E-AD-G的平面角,再利用三角形中邊長(zhǎng)關(guān)系求出∠GOE的正切值;②空間向量法,建立如圖所示的空間直角坐標(biāo)系,寫(xiě)出已知點(diǎn)的坐標(biāo),設(shè)平面ADG的法向量為,根據(jù),求出
,而平面EAD的一個(gè)法向量為,再根據(jù)求出.
試題解析:(1)如圖,取AD的中點(diǎn)O,連結(jié)OP,OE,∵PA=PD,∴OP⊥AD,

又E是BC的中點(diǎn),∴OE∥AB,∴OE⊥AD.
又OP∩OE=0,∴AD⊥平面OPE.
∵PE?平面OPE,∴AD⊥PE.
(2)解法一:取OE的中點(diǎn)F,連結(jié)FG,OG,則由(1)易知AD⊥OG,
又OE⊥AD,∴∠GOE就是二面角E-AD-G的平面角,
∵PA=PD,∠APD=60°,
∴△APD為等邊三角形,且邊長(zhǎng)為2,
∴OP=×2=,F(xiàn)G=OP=,OF=CD=1,
∴OG=,∴cos∠GOE=
解法二:建立如圖所示的空間直角坐標(biāo)系,則A(1,0,0),D(-1,0,0),P(0,0,),E(0,2,0),


設(shè)平面ADG的法向量為

.
又平面EAD的一個(gè)法向量為
又因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/4d/e/1bekp3.png" style="vertical-align:middle;" />.
考點(diǎn):1.線線垂直的證明;2.二面角的求解.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,斜四棱柱的底面是矩形,平面⊥平面分別為的中點(diǎn).

求證:
(1);(2)∥平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖:PA⊥平面ABCD,ABCD是矩形,PA=AB=1,AD=,點(diǎn)F是PB的中點(diǎn),點(diǎn)E在邊BC上移動(dòng)

(Ⅰ)求三棱錐E-PAD的體積;
(Ⅱ)當(dāng)點(diǎn)E為BC的中點(diǎn)時(shí),試判斷EF與平面PAC的位置關(guān)系,并說(shuō)明理由;
(Ⅲ)證明:無(wú)論點(diǎn)E在邊BC的何處,都有PE⊥AF

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖所示,矩形中,,且交于點(diǎn).

(Ⅰ)求證:
(Ⅱ)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在三棱錐中,分別為的中點(diǎn).

(1)求證:EF∥平面;
(2)若平面平面,且º,求證:平面平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在四棱錐中,底面是邊長(zhǎng)為的正方形, ,且點(diǎn)滿足 .

(1)證明:平面 .
(2)在線段上是否存在點(diǎn),使得平面?若存在,確定點(diǎn)的位置,若不存在請(qǐng)說(shuō)明理由 .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在正三棱柱中,分別為的中點(diǎn).

(1)求證:平面
(2)求證:平面平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖1,矩形中,,,分別為邊上的點(diǎn),且,,將沿折起至位置(如圖2所示),連結(jié),其中.

(Ⅰ)求證:平面
(Ⅱ)在線段上是否存在點(diǎn)使得平面?若存在,求出點(diǎn)的位置;若不存在,請(qǐng)說(shuō)明理由.
(Ⅲ)求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,正方形所在平面與圓所在的平面相交于,線段為圓的弦,垂直于圓所在的平面,垂足為圓上異于的點(diǎn),設(shè)正方形的邊長(zhǎng)為,且.

(1)求證:平面平面
(2)若異面直線所成的角為與底面所成角為,二面角所成角為,求證

查看答案和解析>>

同步練習(xí)冊(cè)答案
主站蜘蛛池模板: 国产精品久久精品 | 亚洲午夜精品久久久久久app | 一级免费视频 | 久久成人精品 | 四色永久 | 欧美黄视频在线观看 | 国产精品久久久久久久久免费软件 | 久久久成人av | 日韩精品一区二区三区中文字幕 | 欧洲成人午夜免费大片 | 国产免费黄色 | 国产精品毛片一区二区三区 | 久草热久草在线 | 免费看黄色的网址 | 91精品国产乱码久久久久久久久 | 在线观看日韩av | 一区二区精品 | 国产精品毛片一区 | 国产免费av一区二区三区 | 91精品国产91久久综合桃花 | 成人高清在线 | 一区二区日韩在线观看 | 欧美日韩一区二区三区不卡视频 | 久久久天天| 国产日韩一区二区 | 成人a网 | 久久亚洲网 | 久久国产香蕉视频 | 国产情侣一区二区三区 | 在线看亚洲 | 日韩欧美在线视频免费观看 | 亚洲精品久久久久久国产精华液 | 精品久久久久久亚洲精品 | 国产精品久久久一区 | 日韩激情综合网 | 亚洲一区中文字幕在线观看 | 欧美精品二区中文乱码字幕高清 | 99国内精品久久久久久久 | 一区二区三区四区精品 | 国产在线拍揄自揄拍视频 | 黄色在线观看 |