(本小題滿分16分)
已知等差數列{an}的首項為a,公差為b,等比數列{bn}的首項為b,公比為a,其中a,b都是大于1的正整數,且a1<b1,b2<a3.
(1)求a的值;
(2)若對于任意的n∈N*,總存在m∈N*,使得am+3=bn成立,求b的值;
(3)令cn=an+1+bn,問數列{cn}中是否存在連續三項成等比數列?若存在,求出所有成等比數列的連續三項;若不存在,請說明理由.
解:(1)由已知,得an=a+(n-1)b,bn=ban−1.由a1<b1,b2<a3,得a<b,ab<a+2b.
因a,b都為大于1的正整數,故a≥2.又b>a,故b≥3.
再由ab<a+2b,得(a-2)b<a.由a<b,故(a-2)b<b,即(a-3)b<0.
由b≥3,故a-3<0,解得a<3. 于是2≤a<3,根據a∈N,可得a=2
(2)am+3=2+(m-1)b+3=bn,∴bn=(m-1)b+5=b·2n−1∴5=b·(2n−1-m+1)
∴5一定是b的倍數∵b≥3∴b=5;此時,2n−1-m+1=1,即m=2n−1.∴b=5
(3)設數列{cn}中,cn,cn+1,cn+2成等比數列,
由cn=2+nb+b·2n−1,得2=cncn+2,
即:(2+nb+b+b·2n)2=(2+nb+b·2n−1)·(2+nb+2b+b·2n+1).
化簡得b=2n+(n-2)·b·2n−1. (※)
當n=1時,由(※)式得:b=1,與題意矛盾.
當n=2時,由(※)式得:b=4.即c2、c3、c4成等比數列,cn=2+4n+2n+1,
∴c2=18、c3=30、c4=50.
當n≥3時,b=2n+(n-2)·b·2n−1>(n-2)·b·2n−1≥4b,這與b≥3矛盾.
綜上所述,當b≠4時,不存在連續三項成等比數列;當b=4時,數列{cn}中的第二、三、四項成等比數列,這三項依次是18、30、50.
科目:高中數學 來源: 題型:
(2010江蘇卷)18、(本小題滿分16分)
在平面直角坐標系
中,如圖,已知橢圓
的左、右頂點為A、B,右焦點為F。設過點T(
)的直線TA、TB與橢圓分別交于點M
、
,其中m>0,
。
(1)設動點P滿足,求點P的軌跡;
(2)設,求點T的坐標;
(3)設,求證:直線MN必過x軸上的一定點(其坐標與m無關)。
查看答案和解析>>
科目:高中數學 來源:2010年泰州中學高一下學期期末測試數學 題型:解答題
(本小題滿分16分)
函數,
(
),
A=
(Ⅰ)求集合A;
(Ⅱ)如果,對任意
時,
恒成立,求實數
的范圍;
(Ⅲ)如果,當“
對任意
恒成立”與“
在
內必有解”同時成立時,求
的最大值.
查看答案和解析>>
科目:高中數學 來源:2014屆江蘇大豐新豐中學高二上期中考試文數學試卷(解析版) 題型:解答題
(本小題滿分16分) 本題請注意換算單位
某開發商用9000萬元在市區購買一塊土地建一幢寫字樓,規劃要求寫字樓每層建筑面積為2000平方米。已知該寫字樓第一層的建筑費用為每平方米4000元,從第二層開始,每一層的建筑費用比其下面一層每平方米增加100元。
(1)若該寫字樓共x層,總開發費用為y萬元,求函數y=f(x)的表達式;
(總開發費用=總建筑費用+購地費用)
(2)要使整幢寫字樓每平方米開發費用最低,該寫字樓應建為多少層?
查看答案和解析>>
科目:高中數學 來源:2013屆安徽省蚌埠市高二下學期期中聯考文科數學試卷(解析版) 題型:解答題
(本小題滿分16分)設命題:方程
無實數根;
命題
:函數
的值域是
.如果命題
為真命題,
為假命題,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源:2010年江蘇省高一第三階段檢測數學卷 題型:解答題
(本小題滿分16分)
已知函數f(x)=為偶函數,且函數y=f(x)圖象的兩相鄰對稱軸間的距離為
(Ⅰ)求f()的值;
(Ⅱ)將函數y=f(x)的圖象向右平移個單位后,再將得到的圖象上各點的橫坐標延長到原來的4倍,縱坐標不變,得到函數y=g(x)的圖象,求g(x)的單調遞減區間.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com