日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情

已知函數滿足,對于任意R都有,且 ,令.

(Ⅰ)求函數的表達式;

(Ⅱ)求函數的單調區間;

(Ⅲ)研究函數在區間上的零點個數.

 

【答案】

,∴.                 …… 1分        

∵對于任意R都有,

∴函數的對稱軸為,即,得.   …… 2分

,即對于任意R都成立,

,且

 ∵,      ∴

 ∴.                …… 4分

(2) 解:       …… 5分

① 當時,函數的對稱軸為

,即,函數上單調遞增;  …… 6分

,即,函數上單調遞增,在上單調遞減.  …… 7分

② 當時,函數的對稱軸為

則函數上單調遞增,在上單調遞減.   …… 8分

綜上所述,當時,函數單調遞增區間為,單調遞減區間為;                     …… 9分

時,函數單調遞增區間為,單調遞減區間為

.                                         …… 10分

 (3)解: 時,由(2)知函數在區間上單調遞增,

故函數在區間上只有一個零點.       …… 11分

② 當時,則,而

(ⅰ)若,由于

此時,函數在區間上只有一個零點;                    …… 12分

(ⅱ)若,由于,此時,函數在區間上有兩個不同的零點.                 …… 13分

綜上所述,當時,函數在區間上只有一個零點;

時,函數在區間上有兩個不同的零點.

【解析】略

 

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

下列說法中,正確的是(  )
①對于定義域為R的函數f(x),若函數f(x)滿足f(x+1)=f(1-x),則函數f(x)的圖象關于x=1對稱;
②當a>1時,任取x∈R都有ax>a-x
③“a=1”是“函數f(x)=lg(ax+1)在(0,+∞)上單調遞增”的充分必要條件;
④設a∈{-1,1,
1
2
,3},則使函數y=xa的定義域為R且該函數為奇函數的所有a的值為1,3;
⑤已知a是函數f(x)=2x-log0.5x的零點,若0<x0<a,則f(x0)<0.

查看答案和解析>>

科目:高中數學 來源: 題型:

若定義在D上的函數y=f(x)滿足條件:存在實數a,b(a<b)且[a,b]?D,使得:
①任取x0∈[a,b],有f(x0)=C(C是常數);
②對于D內任意y0,當y0∉[a,b],總有f(y0)<C.
我們將滿足上述兩條件的函數f(x)稱為“平頂型”函數,稱C為“平頂高度”,稱b-a為“平頂寬度”.根據上述定義,解決下列問題:
(1)函數f(x)=-|x+2|-|x-3|是否為“平頂型”函數?若是,求出“平頂高度”和“平頂寬度”;若不是,簡要說明理由.
(2)已知f(x)=mx-
x2+2x+n
,x∈[-2,+∞)
是“平頂型”函數,求出m,n的值.
(3)對于(2)中的函數f(x),若f(x)=kx在x∈[-2,+∞)上有兩個不相等的根,求實數k的取值范圍.

查看答案和解析>>

科目:高中數學 來源:2012屆上海市高三第一學期期中理科數學試卷 題型:解答題

若定義在上的函數滿足條件:存在實數,使得:

⑴ 任取,有是常數);

⑵ 對于內任意,當,總有

我們將滿足上述兩條件的函數稱為“平頂型”函數,稱為“平頂高度”,稱為“平頂寬度”。根據上述定義,解決下列問題:

(1)函數是否為“平頂型”函數?若是,求出“平頂高度”和“平頂寬度”;若不是,簡要說明理由。

(2) 已知是“平頂型”函數,求出 的值。

(3)對于(2)中的函數,若上有兩個不相等的根,求實數的取值范圍。

 

查看答案和解析>>

科目:高中數學 來源:2010年高考試題(上海秋季)解析版(理) 題型:解答題

 [番茄花園1] 本題共有3個小題,第1小題滿分3分,第2小題滿分5分,第3小題滿分10分。

若實數滿足,則稱遠離.

(1)若比1遠離0,求的取值范圍;

(2)對任意兩個不相等的正數,證明:遠離

(3)已知函數的定義域.任取等于中遠離0的那個值.寫出函數的解析式,并指出它的基本性質(結論不要求證明).

23本題共有3個小題,第1小題滿分3分,第2小題滿分6分,第3小題滿分9分.

已知橢圓的方程為,點P的坐標為(-a,b).

(1)若直角坐標平面上的點M、A(0,-b),B(a,0)滿足,求點的坐標;

(2)設直線交橢圓兩點,交直線于點.若,證明:的中點;

(3)對于橢圓上的點Q(a cosθ,b sinθ)(0<θ<π),如果橢圓上存在不同的兩個交點滿足,寫出求作點的步驟,并求出使存在的θ的取值范圍.

 

 

 

 


 [番茄花園1]22.

查看答案和解析>>

科目:高中數學 來源:2012-2013學年黑龍江省大慶市鐵人中學高三(上)第二次段考數學試卷(解析版) 題型:選擇題

下列說法中,正確的是( )
①對于定義域為R的函數f(x),若函數f(x)滿足f(x+1)=f(1-x),則函數f(x)的圖象關于x=1對稱;
②當a>1時,任取x∈R都有ax>a-x
③“a=1”是“函數f(x)=lg(ax+1)在(0,+∞)上單調遞增”的充分必要條件;
④設a∈{-1,1,,3},則使函數y=xa的定義域為R且該函數為奇函數的所有a的值為1,3;
⑤已知a是函數f(x)=2x-log0.5x的零點,若0<x<a,則f(x)<0.
A.①④
B.①④⑤
C.②③④
D.①⑤

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 国产亚洲精品久久 | 四虎影| 狠狠躁夜夜躁人人爽视频 | 午夜爽爽爽 | 美女91| 亚洲精品久久久久久一区二区 | 日韩三级电影视频 | 欧美日韩一区二区视频在线观看 | 黄色影视免费观看 | 久草免费在线 | 欧美精品一区二区三区在线四季 | 日本久久www成人免 亚洲成人av | 国产成人精品国内自产拍免费看 | 精品视频一区二区三区在线观看 | 日本久久久一区二区三区 | 99精品一区二区三区 | 在线视频国产一区 | 欧美日韩一区二区三区在线观看 | 国产精品91久久久久 | 久久成人精品视频 | 日韩欧美网 | 一区二区日韩精品 | www.中文字幕 | 久久精品视频在线观看 | 久久久精品影院 | 亚洲精品国产精品乱码不99按摩 | 一区二区三区在线播放 | 久久小视频 | 性色av网| 日韩精品成人 | 亚洲国产伊人 | 欧美日韩一区在线 | 国产第一页在线播放 | 久久男女视频 | 成人欧美一区二区三区黑人孕妇 | 欧美精品在线一区二区三区 | 黄色网免费看 | 国产视频一区二区在线观看 | 精品不卡| 亚洲成人免费 | 日韩欧美视频 |