【題目】如圖,A,B為橢圓的左、右頂點(diǎn),直線
過橢圓C的右焦點(diǎn)F且交橢圓于P,Q兩點(diǎn).連結(jié)
并延長交直線
于點(diǎn)M.
(1)若直線的斜率為
,求直線
的方程;
(2)求證:A,Q,M三點(diǎn)共線.
【答案】(1);(2)證明見解析.
【解析】
(1)設(shè),計(jì)算出
的值,最后求出直線
的斜率,最后求出直線
的方程;
(2)根據(jù)直線的斜率為零不為零進(jìn)行分類討論. 直線
的斜率為零時(shí),顯然成立;直線
的斜率不為零時(shí),設(shè)出直線的方程與橢圓方程聯(lián)立,利用根與系數(shù)的關(guān)系,只要計(jì)算出
就可以證明出A,Q,M三點(diǎn)共線.
(1)設(shè),所以
,由題意可知:
,
則.
∴,∴直線
的方程為:
(2)當(dāng)垂直于y軸時(shí),方程為
,此時(shí)顯然有A,Q,M三點(diǎn)共線;
當(dāng)不垂直于y軸時(shí),設(shè)
方程為
,
,
則直線方程為
,令
得,
,即
.
∴
∵
∴
∴A,Q,M三點(diǎn)共線.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)討論的單調(diào)性.
(2)試問是否存在,使得
對(duì)
恒成立?若存在,求
的取值范圍;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在一個(gè)半圓中有兩個(gè)互切的內(nèi)切半圓,由三個(gè)半圓弧圍成曲邊三角形,作兩個(gè)內(nèi)切半圓的公切線把曲邊三角形分隔成兩塊,阿基米德發(fā)現(xiàn)被分隔的這兩塊的內(nèi)切圓是同樣大小的,由于其形狀很像皮匠用來切割皮料的刀子,他稱此為“皮匠刀定理”,如圖,若,則陰影部分與最大半圓的面積比為( )
A.B.
C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)若討論
的單調(diào)性;
(2)當(dāng)時(shí),若函數(shù)
與
的圖象有且僅有一個(gè)交點(diǎn)
,求
的值(其中
表示不超過
的最大整數(shù),如
.
參考數(shù)據(jù):
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)的值域?yàn)?/span>
.
(1)判斷此函數(shù)的奇偶性,并說明理由;
(2)判斷此函數(shù)在的單調(diào)性,并用單調(diào)性的定義證明你的結(jié)論;
(3)求出在
上的最小值
,并求
的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線:
(
),直線
:
,
與
交于P、Q兩點(diǎn),
為P關(guān)于y軸的對(duì)稱點(diǎn),直線
與y軸交于點(diǎn)
;
(1)若點(diǎn)是
的一個(gè)焦點(diǎn),求
的漸近線方程;
(2)若,點(diǎn)P的坐標(biāo)為
,且
,求k的值;
(3)若,求n關(guān)于b的表達(dá)式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面
為正方形,
底面
,
,
為線段
的中點(diǎn),
為線段
上的動(dòng)點(diǎn).
(1)求證:平面平面
.
(2)試確定點(diǎn)的位置,使平面
與平面
所成的銳二面角為
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖:雙曲線:
的左、右焦點(diǎn)分別為
,
,過
作直線
交
軸于點(diǎn)
.
(1)當(dāng)直線平行于
的一條漸近線時(shí),求點(diǎn)
到直線
的距離;
(2)當(dāng)直線的斜率為
時(shí),在
的右支上是否存在點(diǎn)
,滿足
?若存在,求出
點(diǎn)的坐標(biāo);若不存在,說明理由;
(3)若直線與
交于不同兩點(diǎn)
、
,且
上存在一點(diǎn)
,滿足
(其中
為坐標(biāo)原點(diǎn)),求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(a>0).
(1)求f(x)的單調(diào)增區(qū)間;
(2)當(dāng)x∈[0,π]時(shí),f(x)值域?yàn)?/span>[3,4],求a,b的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com