日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情

【題目】已知函數f(x)=x﹣ln(x+a)的最小值為0,其中a>0.
(1)求a的值;
(2)若對任意的x∈[0,+∞),有f(x)≤kx2成立,求實數k的最小值;
(3)證明: (n∈N*).

【答案】
(1)解:函數的定義域為(﹣a,+∞),求導函數可得

令f′(x)=0,可得x=1﹣a>﹣a

令f′(x)>0,x>﹣a可得x>1﹣a;令f′(x)<0,x>﹣a可得﹣a<x<1﹣a

∴x=1﹣a時,函數取得極小值且為最小值

∵函數f(x)=x﹣ln(x+a)的最小值為0,

∴f(1﹣a)=1﹣a﹣0,解得a=1


(2)解:當k≤0時,取x=1,有f(1)=1﹣ln2>0,故k≤0不合題意

當k>0時,令g(x)=f(x)﹣kx2,即g(x)=x﹣ln(x+1)﹣kx2

求導函數可得g′(x)=

g′(x)=0,可得x1=0,

①當k≥ 時, ,g′(x)<0在(0,+∞)上恒成立,因此g(x)在(0,+∞)上單調遞減,從而對任意的x∈[0,+∞),總有g(x)≤g(0)=0,即對任意的x∈[0,+∞),有f(x)≤kx2成立;

②當0<k< 時, ,對于 ,g′(x)>0,因此g(x)在 上單調遞增,

因此取 時,g(x0)≥g(0)=0,即有f(x0)≤kx02不成立;

綜上知,k≥ 時對任意的x∈[0,+∞),有f(x)≤kx2成立,k的最小值為


(3)證明:當n=1時,不等式左邊=2﹣ln3<2=右邊,所以不等式成立

當n≥2時,

在(2)中,取k= ,得f(x)≤ x2,∴ (i≥2,i∈N*).

=f(2)+ <2﹣ln3+ =2﹣ln3+1﹣ <2

綜上, (n∈N*


【解析】(1)確定函數的定義域,求導函數,確定函數的單調性,求得函數的最小值,利用函數f(x)=x﹣ln(x+a)的最小值為0,即可求得a的值;(2)當k≤0時,取x=1,有f(1)=1﹣ln2>0,故k≤0不合題意;當k>0時,令g(x)=f(x)﹣kx2 , 即g(x)=x﹣ln(x+1)﹣kx2 , 求導函數,令g′(x)=0,可得x1=0, ,分類討論:①當k≥ 時, ,g(x)在(0,+∞)上單調遞減,g(x)≤g(0)=0;②當0<k< 時, ,對于 ,g′(x)>0,因此g(x)在 上單調遞增,由此可確定k的最小值;(3)當n=1時,不等式左邊=2﹣ln3<2=右邊,不等式成立;當n≥2時, ,在(2)中,取k= ,得f(x)≤ x2 , 從而可得 ,由此可證結論.
【考點精析】認真審題,首先需要了解函數的最大(小)值與導數(求函數上的最大值與最小值的步驟:(1)求函數內的極值;(2)將函數的各極值與端點處的函數值,比較,其中最大的是一個最大值,最小的是最小值).

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】某市居民自來水收費標準如下:每戶每月用水不超過4噸時,每噸為1.80元,當用水超過4噸時,超過部分每噸3.00元,某月甲、乙兩戶共交水費y元,已知甲、乙兩戶該月用水量分別為5x噸、3x噸.

(1)y關于x的函數;

(2)若甲、乙兩戶該月共交水費26.4元,分別求出甲、乙兩戶該月的用水量和水費.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知a>0,b∈R,函數f(x)=4ax3﹣2bx﹣a+b.
(1)證明:當0≤x≤1時,
(i)函數f(x)的最大值為|2a﹣b|+a;
(ii)f(x)+|2a﹣b|+a≥0;
(2)若﹣1≤f(x)≤1對x∈[0,1]恒成立,求a+b的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

(1)若不等式的解集為,求實數的值;

(2)在(1)的條件下,若存在實數使成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】深受廣大球迷喜愛的某支歐洲足球隊.在對球員的使用上總是進行數據分析,為了考察甲球員對球隊的貢獻,現作如下數據統計:

球隊勝

球隊負

總計

甲參加

22

b

30

甲未參加

c

12

d

總計

30

e

n

(1)求b,c,d,e,n的值,據此能否有97.7%的把握認為球隊勝利與甲球員參賽有關;

(2)根據以往的數據統計,乙球員能夠勝任前鋒、中鋒、后衛以及守門員四個位置,且出場率分別為:0.2,0.5,0.2,0.1,當出任前鋒、中鋒、后衛以及守門員時,球隊輸球的概率依次為:0.4,0.2,0.6,0.2.則:

當他參加比賽時,求球隊某場比賽輸球的概率;

當他參加比賽時,在球隊輸了某場比賽的條件下,求乙球員擔當前鋒的概率;

附表及公式:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

2.072

2.706

3.841

5.024

6.635

7.879

10.828

.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓,其焦距為,若,則稱橢圓為“黃金橢圓”.黃金橢圓有如下性質:“黃金橢圓”的左、右焦點分別是,,以,,,為頂點的菱形的內切圓過焦點,.

(1)類比“黃金橢圓”的定義,試寫出“黃金雙曲線”的定義;

(2)類比“黃金橢圓”的性質,試寫出“黃金雙曲線”的性質,并加以證明.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】智能手機的出現,改變了我們的生活,同時也占用了我們大量的學習時間.某市教育機構從名手機使用者中隨機抽取名,得到每天使用手機時間(單位:分鐘)的頻率分布直方圖(如圖所示),其分組是: ,.

1)根據頻率分布直方圖,估計這名手機使用者中使用時間的中位數是多少分鐘? (精確到整數)

2)估計手機使用者平均每天使用手機多少分鐘? (同一組中的數據以這組數據所在區間中點的值作代表)

3)在抽取的名手機使用者中在中按比例分別抽取人和人組成研究小組,然后再從研究小組中選出名組長.求這名組長分別選自的概率是多少?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某市國慶節天假期的樓房認購量(單位:套)與成交量(單位:套)的折線圖如圖所示,小明同學根據折線圖對這天的認購量與成交量作出如下判斷:①日成交量的中位數是;②日成交量超過日平均成交量的有天;③認購量與日期正相關;④日認購量的增量大于日成交量的增量.上述判斷中錯誤的個數為( )

A. B. C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知數列{an}的前n項和為Sn , 且a2an=S2+Sn對一切正整數n都成立.
(1)求a1 , a2的值;
(2)設a1>0,數列{lg }的前n項和為Tn , 當n為何值時,Tn最大?并求出Tn的最大值.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 粉嫩高清一区二区三区精品视频 | 四虎8848精品成人免费网站 | 亚洲欧美视频 | 国产一区精品 | 亚洲 自拍 另类 欧美 丝袜 | 91精品国产日韩91久久久久久 | а天堂中文最新一区二区三区 | 一级片福利 | 91国内视频在线观看 | 日韩久草 | 欧美日本不卡 | 免费av毛片 | 久久在线视频 | 精品国产一区二区三区小蝌蚪 | 久久国产精品免费视频 | 欧美激情自拍偷拍 | 日韩欧美国产精品综合嫩v 久草久草久草 | 亚洲欧美一区二区三区视频 | 色综合88 | 国产精品久久久久久久竹霞 | 亚洲国产精品一区 | 日韩一区二区在线观看 | 日韩三级在线播放 | 91超碰在线播放 | 无码少妇一区二区三区 | 久久国产精品毛片 | 国产自产精品视频 | 国产精品 日韩 | 欧美日韩成人在线视频 | 黄色影院在线观看 | 欧美视频免费看 | 在线一区二区三区 | 久久香蕉国产 | 成人黄色电影小说 | 蜜桃精品久久久久久久免费影院 | 成人午夜sm精品久久久久久久 | 国产a一三三四区电影 | 国产高清一区 | 中文字幕成人免费视频 | 欧美视频一区二区 | 久久av一区二区三区 |