【題目】已知函數f(x)滿足 ,當
時,f(x)=lnx,若在
上,方程f(x)=kx有三個不同的實根,則實數k的取值范圍是( )
A.
B.[﹣4ln4,﹣ln4]
C.
D.
科目:高中數學 來源: 題型:
【題目】是指空氣中直徑小于或等于
微米的顆粒物(也稱可入肺顆粒物).為了探究車流量與
的濃度是否相關,現采集到某城市周一至周五某一時間段車流量與
的數據如下表:
時間 | 周一 | 周二 | 周三 | 周四 | 周五 |
車流量 | |||||
|
(Ⅰ)根據上表數據,請在所給的坐標系中畫出散點圖;
(Ⅱ)根據上表數據,用最小二乘法求出關于
的線性回歸方程
;
(Ⅲ)若周六同一時間段的車流量是萬輛,試根據(Ⅱ)求出的線性回歸方程,預測此時
的濃度為多少(保留整數)?
參考公式:由最小二乘法所得回歸直線的方程是:,
其中.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】小明跟父母、爺爺奶奶一同參加《中國詩詞大會》的現場錄制,5人坐成一排.若小明的父母至少有一人與他相鄰,則不同坐法的總數為
A. 60 B. 72 C. 84 D. 96
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】有以下命題:
①若函數f(x)既是奇函數又是偶函數,則f(x)的值域為{0};
②若函數f(x)是偶函數,則f(|x|)=f(x);
③若函數f(x)在其定義域內不是單調函數,則f(x)不存在反函數;
④若函數f(x)存在反函數f﹣1(x),且f﹣1(x)與f(x)不完全相同,則f(x)與f﹣1(x)圖象的公共點必在直線y=x上;
其中真命題的序號是 .(寫出所有真命題的序號)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在空間四邊形ABCD(A,B,C,D不共面)中,一個平面與邊AB,BC,CD,DA分別交于E,F,G,H(不含端點),則下列結論錯誤的是( )
A.若AE:BE=CF:BF,則AC∥平面EFGH
B.若E,F,G,H分別為各邊中點,則四邊形EFGH為平行四邊形
C.若E,F,G,H分別為各邊中點且AC=BD,則四邊形EFGH為矩形
D.若E,F,G,H分別為各邊中點且AC⊥BD,則四邊形EFGH為矩形
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列{an}的前n項和為Sn , 且對任意正整數n,都有an= +2成立.
(1)記bn=log2an , 求數列{bn}的通項公式;
(2)設cn= ,求數列{cn}的前n項和Tn .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,曲線
的參數方程為
(
,
為參數),以坐標原點
為極點,
軸正半軸為極軸建立極坐標系,直線
的極坐標方程為
,若直線
與曲線
相切;
(1)求曲線的極坐標方程;
(2)在曲線上取兩點
,
與原點
構成
,且滿足
,求面積
的最大值.
【答案】(1);(2)
【解析】試題分析:(1)利用極坐標與直角坐標的互化公式可得直線的直角坐標方程為
,
,消去參數可知曲線
是圓心為
,半徑為
的圓,由直線
與曲線
相切,可得:
;則曲線C的方程為
, 再次利用極坐標與直角坐標的互化公式可得
可得曲線C的極坐標方程.
(2)由(1)不妨設M(),
,(
),
,
,
由此可求面積的最大值.
試題解析:(1)由題意可知直線的直角坐標方程為
,
曲線是圓心為
,半徑為
的圓,直線
與曲線
相切,可得:
;可知曲線C的方程為
,
所以曲線C的極坐標方程為,
即.
(2)由(1)不妨設M(),
,(
),
,
,
當 時,
,
所以△MON面積的最大值為.
【題型】解答題
【結束】
23
【題目】已知函數的定義域為
;
(1)求實數的取值范圍;
(2)設實數為
的最大值,若實數
,
,
滿足
,求
的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列{an}的前n項和為Sn , Sn=n2+n.
(Ⅰ)求{an}的通項公式an;
(Ⅱ)若ak+1 , a2k , a2k+3(k∈N*)恰好依次為等比數列{bn}的第一、第二、第三項,求數列{ }的前n項和Tn .
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com