【題目】已知數列{an},{bn}滿足a1=1,且an , an+1是函數f(x)=x2﹣bnx+2n的兩個零點,則b10等于( )
A.24
B.32
C.48
D.64
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
在平面直角坐標系中,以坐標原點
為極點,
軸正半軸為極軸建立極坐標系,已知曲線
的極坐標方程為:
,直線
的參數方程是
(
為參數,
).
(1)求曲線的直角坐標方程;
(2)設直線與曲線
交于兩點
,且線段
的中點為
,求
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】平面內有向量 =(1,7),
=(5,1),
=(2,1),點X為直線OP上的一個動點.
(1)當
取最小值時,求
的坐標;
(2)當點X滿足(1)的條件和結論時,求cos∠AXB的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面內有n(n∈N*)條直線,其中任何兩條不平行,任何三條不過同一點,若這n條直線把平面分成f(n)個平面區域,則f(3)=;f(n)= .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(文)已知矩形ABB1A1是圓柱體的軸截面,O、O1分別是下底面圓和上底面圓的圓心,母線長與底面圓的直徑長之比為2:1,且該圓柱體的體積為32π,如圖所示.
(1)求圓柱體的側面積S側的值;
(2)若C1是半圓弧 的中點,點C在半徑OA上,且OC=
OA,異面直線CC1與BB1所成的角為θ,求sinθ的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖:已知四棱錐P﹣ABCD中,PD⊥平面ABCD,ABCD是正方形,E是PA的中點,求證:
(1)PC∥平面EBD.
(2)平面PBC⊥平面PCD.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(本小題共14分)
如圖,在四棱錐中,
平面
,底面
是菱形,
.
(Ⅰ)求證: 平面
(Ⅱ)若求
與
所成角的余弦值;
(Ⅲ)當平面與平面
垂直時,求
的長.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com