(14分)設集合P={1,2,3}和Q={-1,1,2,3,4},分別從集合P和Q中隨機取一個數作為和
組成數對(
,并構成函數
(Ⅰ)寫出所有可能的數對(,并計算
,且
的概率;
(Ⅱ)求函數在區間[
上是增函數的概率.
(1)(2)
【解析】(Ⅰ)所有基本事件如下:
(1,-1),(1,1),(1,2),(1,3),(1,4),
(2,-1),(2,1),(2,2),(2,3),(2,4),
(3,-1),(3,1),(3,2),(3,3),(3,4) ,共有15個!4分
設事件“,且
”為A,
則事件A包含的基本事件有8個, ………………………………… 6分
所以P(A)=。
……………………………………………8分
(Ⅱ)設事件“在區間
上為增函數”為B,
因函數的圖象的對稱軸為
且
>0,
所以要使事件B發生,只需!10分
由滿足題意的數對有(1,-1)、(2,-1)、(2,1)、(3,-1)、(3,1),共5個,
…………………………12分
所以,P(B)= .
…………………………14分
科目:高中數學 來源: 題型:
|
查看答案和解析>>
科目:高中數學 來源: 題型:
|
查看答案和解析>>
科目:高中數學 來源: 題型:
查看答案和解析>>
科目:高中數學 來源: 題型:
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com