【題目】將一顆骰子投擲兩次分別得到點數a,b,則直線ax-by=0與圓(x-2)2+y2=2相交的概率為____________.
科目:高中數學 來源: 題型:
【題目】已知橢圓的中心在坐標原點
,焦點在
軸上,橢圓
的短軸端點和焦點所組成的四邊形為正方形,且橢圓
上任意一點到兩個焦點的距離之和為
.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)若直線與橢圓
相交于
兩點,求
面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某研究所計劃利用“神七”宇宙飛船進行新產品搭載實驗,計劃搭載新產品、
,該所要根據該產品的研制成本、產品重量、搭載實驗費用、和預計產生收益來決定具體安排.通過調查,有關數據如下表:
產品A(件) | 產品B(件) | ||
研制成本、搭載費用之和(萬元) | 20 | 30 | 計劃最大資金額300萬元 |
產品重量(千克) | 10 | 5 | 最大搭載重量110千克 |
預計收益(萬元) | 80 | 60 |
如何安排這兩種產品的件數進行搭載,才能使總預計收益達到最大,最大收益是多少?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓:
(
)的離心率為
,以橢圓的四個頂點為頂點的四邊形的面積為8.
(Ⅰ)求橢圓的方程;
(Ⅱ)如圖,斜率為的直線
與橢圓
交于
,
兩點,點
在直線
的左上方.若
,且直線
,
分別與
軸交于
,
點,求線段
的長度.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】橢圓與雙曲線有相同的焦點,
,橢圓的一個短軸端點為
,直線
與雙曲線的一條漸近線平行,若橢圓于雙曲線的離心率分別為
,
,則
的最小值為__________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某家庭進行理財投資,根據長期收益率市場預測,投資債券等穩健型產品的收益與投資額成正比,投資股票等風險型產品的收益與投資額的算術平方根成正比.已知投資1萬元時兩類產品的收益分別為0.125萬元和0.5萬元(如圖).
(1)分別寫出兩種產品的收益與投資額的函數關系式;
(2)該家庭現有20萬元資金,全部用于理財投資,問:怎么分配資金能使投資獲得最大收益,其最大收益是多少萬元?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設f(x)=a﹣ ,x∈R,(其中a為常數).
(1)若f(x)為奇函數,求a的值;
(2)若不等式f(x)+a>0恒成立,求實數a的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com