【題目】在數(shù)列中,
,當(dāng)n≥2時(shí),其前n項(xiàng)和
滿足
,設(shè)
數(shù)列
的前n項(xiàng)和為
,則滿足
≥5的最小正整數(shù)n是( )
A.10B.9C.8D.7
【答案】D
【解析】
在數(shù)列{an}中,a1=1,當(dāng)n≥2時(shí),其前n項(xiàng)和為Sn滿足Sn2=an(Sn﹣1),即Sn2=(Sn﹣Sn﹣1)(Sn﹣1),化為:1.利用等差數(shù)列的通項(xiàng)公式可得:Sn
.可得bn=log2
,利用對(duì)數(shù)的運(yùn)算性質(zhì)可得:數(shù)列{bn}的前n項(xiàng)和為Tn
.由
5,解得(n+1)(n+2)≥26,解得n.
在數(shù)列{an}中,a1=1,當(dāng)n≥2時(shí),其前n項(xiàng)和為Sn滿足Sn2=an(Sn﹣1),
∴Sn2=(Sn﹣Sn﹣1)(Sn﹣1),化為:1.
∴數(shù)列是等差數(shù)列,首項(xiàng)為1,公差為1.
∴1+(n﹣1)=n,解得:Sn
.
∴bn=log2,
數(shù)列{bn}的前n項(xiàng)和為Tn
.
由Tn≥6,即5,解得(n+1)(n+2)≥26,
令f(x)=x2+3x﹣62
64
,
可得:f(x)在[1,+∞)上單調(diào)遞增.
而f(6)=﹣8<0,f(7)=8>0,
若x∈N*,則n≥7.
則滿足Tn≥5的最小正整數(shù)n是7.
故選:D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線
的參數(shù)方程為
(
為參數(shù)),以原點(diǎn)
為極點(diǎn),
軸為極軸的極坐標(biāo)系中,圓
的方程
.
(1)寫出直線的普通方程和圓
的直角坐標(biāo)方程;
(2)若點(diǎn)的直角坐標(biāo)為
,圓
與直線
交于
兩點(diǎn),求弦
中點(diǎn)
的直角坐標(biāo)和
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若對(duì)于曲線f(x)=-ex-x(e為自然對(duì)數(shù)的底數(shù))的任意切線l1,總存在曲線g(x)=ax+2cosx的切線l2,使得l1⊥l2,則實(shí)數(shù)a的取值范圍為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若關(guān)于的不等式
的解集為
,求實(shí)數(shù)
的值;
(2)設(shè),若不等式
對(duì)
都成立,求實(shí)數(shù)
的取值范圍;
(3)若且
時(shí),求函數(shù)
的零點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義:若兩個(gè)橢圓的離心率相等,則稱兩個(gè)橢圓是“相似”的.如圖,橢圓與橢圓
是相似的兩個(gè)橢圓,并且相交于上下兩個(gè)頂點(diǎn),橢圓
的長(zhǎng)軸長(zhǎng)是4,橢圓
長(zhǎng)軸長(zhǎng)是2,點(diǎn)
,
分別是橢圓
的左焦點(diǎn)與右焦點(diǎn).
(1)求橢圓,
的方程;
(2)過的直線交橢圓
于點(diǎn)
,
,求
面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,直線
經(jīng)過點(diǎn)
,其傾斜角為
.以原點(diǎn)
為極點(diǎn),以
軸非負(fù)半軸為極軸,與直角坐標(biāo)系
取相同的長(zhǎng)度單位,建立極坐標(biāo)系.設(shè)曲線
的極坐標(biāo)方程為
.
(1)寫出直線的參數(shù)方程,若直線
與曲線
有公共點(diǎn),求
的取值范圍.
(2)設(shè)為曲線
上任意一點(diǎn),求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四面體SABC中若三條側(cè)棱SA,SB,SC兩兩互相垂直,且SA=1,SB=,SC=
,則四面體ABCD的外接球的表面積為( )
A.8πB.6πC.4πD.2π
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某超市計(jì)劃按月訂購(gòu)一種飲料,每天進(jìn)貨量相同,進(jìn)貨成本每瓶3元,售價(jià)每瓶5元,每天未售出的飲料最后打4折當(dāng)天全部處理完根據(jù)往年銷售經(jīng)驗(yàn),每天需求量與當(dāng)天最高氣溫
單位:
有關(guān)
如果最高氣溫不低于25,需求量為500瓶;如果最高氣溫位于區(qū)間
,需求量為300瓶;如果最高氣溫低于20,需求量為100瓶
為了確定六月份的訂購(gòu)計(jì)劃,統(tǒng)計(jì)了前三年六月份各天的最高氣溫?cái)?shù)據(jù),得到下面的頻數(shù)分布表:
最高氣溫 | ||||||
天數(shù) | 2 | 16 | 36 | 25 | 7 | 4 |
以最高氣溫位于各區(qū)間的頻率代替最高氣溫位于該區(qū)間的概率.
Ⅰ
求六月份這種飲料一天的需求量
單位:瓶
的分布列,并求出期望EX;
Ⅱ
設(shè)六月份一天銷售這種飲料的利潤(rùn)為
單位:元
,且六月份這種飲料一天的進(jìn)貨量為
單位:瓶
,請(qǐng)判斷Y的數(shù)學(xué)期望是否在
時(shí)取得最大值?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,拋物線方程為
,其頂點(diǎn)到焦點(diǎn)的距離為
.
(1)求拋物線的方程;
(2)若點(diǎn),設(shè)直線
與拋物線交于
、
兩點(diǎn),且直線
、
的斜率之和為
,試證明:對(duì)于任意非零實(shí)數(shù)
,直線
必過定點(diǎn).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com