【題目】已知橢圓,若在
,
,
,
四個點中有3個在
上.
(1)求橢圓的方程;
(2)若點與點
是橢圓
上關于原點對稱的兩個點,且
,求
的取值范圍.
科目:高中數學 來源: 題型:
【題目】已知數列,
,其前
項和
滿足
,其中
.
(1)設,證明:數列
是等差數列;
(2)設,
為數列
的前
項和,求證:
;
(3)設(
為非零整數,
),試確定
的值,使得對任意
,都有
成立.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓:
的左、右焦點分別為
,
,若橢圓經過點
,且
的面積為
.
(1)求橢圓的標準方程;
(2)設斜率為的直線
與以原點為圓心,半徑為
的圓交于
,
兩點,與橢圓
交于
,
兩點,且
,當
取得最小值時,求直線
的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】 如圖,在四棱錐中,底面
為平行四邊形,
為等邊三角形,平面
平面
,
,
,
,
(Ⅰ)設分別為
的中點,求證:
平面
;
(Ⅱ)求證:平面
;
(Ⅲ)求直線與平面
所成角的正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】【選修4-4:坐標系與參數方程】
在平面直角坐標系中,曲線
的參數方程為:
(
為參數,
),將曲線
經過伸縮變換:
得到曲線
.
(1)以原點為極點, 軸的正半軸為極軸建立坐標系,求
的極坐標方程;
(2)若直線(
為參數)與
相交于
兩點,且
,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】學校某研究性學習小組在對學生上課注意力集中情況的調查研究中,發現其在40分鐘的一節課中,注意力指數與聽課時間
(單位:分鐘)之間的關系滿足如圖所示的圖象,當
時,圖象是二次函數圖象的一部分,其中頂點
,過點
;當
時,圖象是線段BC,其中
.根據專家研究,當注意力指數大于62時,學習效果最佳.要使得學生學習效果最佳,則教師安排核心內容的時間段為____________.(寫成區間形式)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com