已知橢圓:
與
正半軸、
正半軸的交點分別為
,動點
是橢圓上任一點,求
面積的最大值。
科目:高中數學 來源: 題型:解答題
橢圓以坐標軸為對稱軸,且經過點、
.記其上頂點為
,右頂點為
.
(1)求圓心在線段上,且與坐標軸相切于橢圓焦點的圓的方程;
(2)在橢圓位于第一象限的弧上求一點
,使
的面積最大.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,在軸上方有一段曲線弧
,其端點
、
在
軸上(但不屬于
),對
上任一點
及點
,
,滿足:
.直線
,
分別交直線
于
,
兩點.
(Ⅰ)求曲線弧的方程;
(Ⅱ)求的最小值(用
表示);
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知雙曲線(a>0,b>0)的離心率
,過點A(0,-b)和B(a,0)的直線與原點的距離是
.
(Ⅰ)求雙曲線的方程及漸近線方程;
(Ⅱ)若直線y=kx+5 (k≠0)與雙曲線交于不同的兩點C、D,且兩點都在以A為圓心的同一個圓上,求k的值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題滿分12分)已知圓M:(x+1)2+y2=1,圓N:(x-1)2+y2=9,動圓P與圓M外切并與圓N內切,圓心P的軌跡為曲線 C
(Ⅰ)求C的方程;
(Ⅱ)l是與圓P,圓M都相切的一條直線,l與曲線C交于A,B兩點,當圓P的半徑最長時,求|AB|.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
點P是橢圓外的任意一點,過點P的直線PA、PB分別與橢圓相切于A、B兩點。
(1)若點P的坐標為,求直線
的方程。
(2)設橢圓的左焦點為F,請問:當點P運動時,是否總是相等?若是,請給出證明。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知拋物線,點P(-1,0)是其準線與
軸的焦點,過P的直線
與拋物線C交于A、B兩點.
(1)當線段AB的中點在直線上時,求直線
的方程;
(2)設F為拋物線C的焦點,當A為線段PB中點時,求△FAB的面積.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,已知橢圓:
的離心率為
,以橢圓
的左頂點
為圓心作圓
:
,設圓
與橢圓
交于點
與點
.
(1)求橢圓的方程;
(2)求的最小值,并求此時圓
的方程;
(3)設點是橢圓
上異于
,
的任意一點,且直線
分別與
軸交于點
,
為坐標原點,
求證:為定值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com