(本題滿分16分)已知函數
(1)求曲線處的切線方程;
(2)求證函數在區間[0,1]上存在唯一的極值點,并用二分法求函數取得極值時相應x的近似值(誤差不超過0.2);(參考數據e≈2.7,
≈1.6,e0.3≈1.3)
(3)當試求實數
的取值范圍.
解:(1),………………………………1分
又,
處的切線方程為
………………………3分
(2),
……………………4分
令,則
上單調遞增,
上存在唯一零點,
上存在唯一的極值點………6分
取區間作為起始區間,用二分法逐次計算如下
區間中點坐標 | 中點對應導數值 | 取區間 | |
| 1 | ||
| | | 0.6 |
| | | 0.3 |
|
由上表可知區間的長度為0.3,所以該區間的中點
,到區間端點距離小于0.2,因此可作為誤差不超過0.2的一個極值點的相應x的值。
取得極值時,相應
………………………9分
(3)由,
即,
,………………………………………12分
令,
令
上單調遞增,
,因此
上單調遞增,則
的取值范
…………………………16分
科目:高中數學 來源:2010-2011年江蘇省淮安市楚州中學高二上學期期末考試數學試卷 題型:解答題
(本題滿分16分)
已知函數,且對任意
,有
.
(1)求;
(2)已知在區間(0,1)上為單調函數,求實
數
的取值范圍.
(3)討論函數的零點個數?(提示
:
)
查看答案和解析>>
科目:高中數學 來源:2012-2013學年浙江省高三10月階段性測試理科數學試卷(解析版) 題型:解答題
(本題滿分16分)已知函數為實常數).
(I)當時,求函數
在
上的最小值;
(Ⅱ)若方程在區間
上有解,求實數
的取值范圍;
(Ⅲ)證明:
(參考數據:)
查看答案和解析>>
科目:高中數學 來源:2013屆江蘇省高二下期中理科數學試卷(解析版) 題型:解答題
(本題滿分16分) 已知橢圓:
的離心率為
,
分別為橢圓
的左、右焦點,若橢圓
的焦距為2.
⑴求橢圓的方程;
⑵設為橢圓上任意一點,以
為圓心,
為半徑作圓
,當圓
與橢圓的右準線
有公共點時,求△
面積的最大值.
查看答案和解析>>
科目:高中數學 來源:2014屆江蘇省高一上學期期中考試數學試卷(解析版) 題型:解答題
(本題滿分16分)已知函數是定義在
上的偶函數,且當
時,
。
(Ⅰ)求及
的值;
(Ⅱ)求函數在
上的解析式;
(Ⅲ)若關于的方程
有四個不同的實數解,求實數
的取值范圍。
查看答案和解析>>
科目:高中數學 來源:江蘇省2009-2010學年高二第二學期期末考試 題型:解答題
本題滿分16分)已知圓內接四邊形ABCD的邊長分別為AB = 2,BC = 6,CD = DA = 4 ;求四邊形ABCD的面積.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com