【題目】如圖,在三棱柱中,已知
側(cè)面
,
,
,
,點
在棱
上.
(1)求的長,并證明
平面
;
(2)若,試確定
的值,使得
到平面
的距離為
.
【答案】(1)見解析;(2)
【解析】試題分析:(1)由題意,根據(jù)余弦定理,求出的長,由勾股定理,易證
,結合條件,可知
,根據(jù)線面垂直定理,從而問題可得解;(2)根據(jù)題意,可采用坐標法進行求解,由(1)可以點
為原點建立空間直角坐標系,由共線定理,對點
坐標作出假設,求出向量
與平面
的法向量,再由向量數(shù)量積公式進行運算即可.
試題解析:(1)證明:因為,
,
,
在△中,由余弦定理,得
,
所以,即C1B⊥BC.
又AB⊥側(cè)面BCC1B1,BC1側(cè)面BCC1B1,故AB⊥BC1,
又,所以C1B⊥平面ABC.
(2)解:由(Ⅰ)知,BC,BA,BC1兩兩垂直,
以B為空間坐標系的原點,建立如圖所示的坐標系,
則B(0,0,0),A(0,2,0),C(,0,0),C1(0,0,
),B1(
,0,
),
,
,
設平面的一個法向量為
,
則
令,得
,又
解得
或
,
∴當或
時,C到平面
的距離為
.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)討論在
上的零點個數(shù);
(2)當時,若存在
,使
,求實數(shù)
的取值范圍.(
為自然對數(shù)的底數(shù),其值為2.71828……)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知f(x)是R上的奇函數(shù),且x>0時,f(x)=x2-4x+3.
求:(1)f(x)的解析式.
(2)已知t>0,求函數(shù)f(x)在區(qū)間[t,t+1]上的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】江蘇省淮陰中學科技興趣小組在計算機上模擬航天器變軌返回試驗.設計方案如圖,航天器運行(按順時針方向)的軌跡方程為,變軌(即航天器運行軌跡由橢圓變?yōu)閽佄锞)后返回的軌跡是以
軸為對稱軸、
為頂點的拋物線的實線部分,降落點為
.觀測點
同時跟蹤航天器,試問:當航天器在
軸上方時,觀測點
,
測得離航天器的距離分別為多少時,應向航天器發(fā)出變軌指令?(變軌指令發(fā)出時航天器立即變軌)。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】狄利克雷函數(shù)是高等數(shù)學中的一個典型函數(shù),若,則稱
為狄利克雷函數(shù).對于狄利克雷函數(shù)
,給出下面4個命題:①對任意
,都有
;②對任意
,都有
;③對任意
,都有
,
;④對任意
,都有
.其中所有真命題的序號是( )
A. ①④ B. ②③ C. ①②③ D. ①③④
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)為奇函數(shù),且相鄰兩對稱軸間的距離為
(1)當時,求
的單調(diào)遞減區(qū)間;
(2)將函數(shù)的圖象沿
軸正方向向右平移
個單位長度,再把橫坐標縮短為原來的
(縱坐標不變),得到函數(shù)
的圖象,當
時,求函數(shù)
的值域.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD和矩形ABEF中,,
,矩形ABEF可沿AB任意翻折.
(1)求證:當點F,A,D不共線時,線段MN總平行于平面ADF.
(2)“不管怎樣翻折矩形ABEF,線段MN總與線段FD平行”這個結論正確嗎?如果正確,請證明;如果不正確,請說明能否改變個別已知條件使上述結論成立,并給出理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的四個頂點圍成的菱形的面積為
,橢圓的一個焦點為圓
的圓心.
(1)求橢圓的方程;
(2)若M,N為橢圓上的兩個動點,直線OM,ON的斜率分別為,當
時,△MON的面積是否為定值?若為定值,求出此定值;若不為定值,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com