【題目】在古代三國時期吳國的數學家趙爽創制了一幅“趙爽弦圖”,由四個全等的直角三角形圍成一個大正方形,中間空出一個小正方形(如圖陰影部分)。若直角三角形中較小的銳角為a。現向大正方形區城內隨機投擲一枚飛鏢,要使飛鏢落在小正方形內的概率為,則
_____________。
科目:高中數學 來源: 題型:
【題目】如圖,四棱錐的底面是正方形,側棱
底面
,過
作
垂直
交
于
點,作
垂直
交
于
點,平面
交
于
點,點
為
上一動點,且
,
.
(1)試證明不論點在何位置,都有
;
(2)求的最小值;
(3)設平面與平面
的交線為
,求證:
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
已知極坐標系的極點與直角坐標系的原點重合,極軸與軸的非負半軸重合,若曲線
的極坐標系方程為
,直線
的參數方程為
為參數).
(1)求曲線的直角坐標方程與直線
的普通方程;
(2)設點直線
與曲線
交于
兩點, 求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知點,點P為平面上的動點,過點P作直線l:
的垂線,垂足為Q,且
.
Ⅰ
求動點P的軌跡C的方程;
Ⅱ
設點P的軌跡C與x軸交于點M,點A,B是軌跡C上異于點M的不同的兩點,且滿足
,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓經過點
,
的四個頂點圍成的四邊形的面積為
.
(1)求的方程;
(2)過的左焦點
作直線
與
交于
、
兩點,線段
的中點為
,直線
(
為坐標原點)與直線
相交于點
,是否存在直線
使得
為等腰直角三角形,若存在,求出
的方程;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數f(x)=(ax2-2x)ex,其中a≥0.
(1)當a=時,求f(x)的極值點;
(2)若f(x)在[-1,1]上為單調函數,求a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系平面上的一列點
,
,…,
,記為
,若由
構成的數列
滿足
,
,其中
為與
軸正方向相同的單位向量,則稱
為
點列.
(1)判斷,
,
,…,
,是否為
點列,并說明理由;
(2)若為
點列.且點
在點
的右上方,(即
)任取其中連續三點
,
,
判斷
的形狀(銳角三角形,直角三角形,鈍角三角形),并給予證明;
(3)若為
點列,正整數
,滿足
.求證:
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】檳榔原產于馬來西亞,中國主要分布在云南、海南及臺灣等熱帶地區,在亞洲熱帶地區廣泛栽培.檳榔是重要的中藥材,在南方一些少數民族還有將果實作為一種咀嚼嗜好品,但其被世界衛生組織國際癌癥研究機構列為致癌物清單Ⅰ類致癌物.云南某民族中學為了解,
兩個少數民族班學生咀嚼檳榔的情況,分別從這兩個班中隨機抽取5名同學進行調查,將他們平均每周咀嚼檳榔的顆數作為樣本繪制成莖葉圖如圖所示(圖中的莖表示十位數字,葉表示個位數字).
(1)從班的樣本數據中隨機抽取一個不超過19的數據記為
,從
班的樣本數據中隨機抽取一個不超過21的數據記為
,求
的概率;
(2)從所有咀嚼檳榔顆數在20顆以上(包含20顆)的同學中隨機抽取3人,求被抽到班同學人數的分布列和數學期望.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com