【題目】在籃球比賽中,如果某位球員的得分,籃板,助攻,搶斷,蓋帽中有兩個值達到或
以上,就稱該球員拿到了兩雙.下表是某球員在最近五場比賽中的數據統計:
場次 | 得分 | 籃板 | 助攻 | 搶斷 | 蓋帽 |
()從上述比賽中任選
場,求該球員拿到“兩雙”的概率.
()從上述比賽中任選
場,設該球員拿到“兩雙”的次數為
,求
的分布列及數學期望.
()假設各場比賽互相獨立,將該球員在上述比賽中獲得“兩雙”的頻率作為概率,設其在接下來的三場比賽中獲得“兩雙”的次數為
,試比賽
與
的大小關系(只需寫出結論).
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=2x,g(x)=-x2+2x+b.
(1)若f(x)++1≥0對任意的x∈[1,3]恒成立,求m的取值范圍;
(2)若x1,x2∈[1,3],對任意的x1,總存在x2,使得f(x1)=g(x2),求b的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在三棱柱ABC﹣A1B1C1中,側面ABB1A1為矩形,AB=2,AA1=2 ,D是AA1的中點,BD與AB1交于點O,且CO⊥平面ABB1A1 .
(1)證明:CD⊥AB1;
(2)若OC=OA,求直線CD與平面ABC所成角的正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】定義: =a1a4﹣a2a3 , 若函數f(x)=
,將其圖象向左平移m(m>0)個單位長度后,所得到的圖象關于y軸對稱,則m的最小值是( )
A.
B.π
C.
D.π
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數為奇函數.
(1)求實數k的值;
(2)判斷函數f(x)在(3,+∞)上的單調性,并利用定義證明;
(3)解關于x的不等式f(2x+6)>f(4x+3×2x+3).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=是定義在R上的奇函數;
(1)求a、b的值,判斷并證明函數y=f(x)在區間(1,+∞)上的單調性
(2)已知k<0且不等式f(t2-2t+3)+f(k-1)<0對任意的t∈R恒成立,求實數k的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=2x-P2-x,則下列結論正確的是( )
A. ,
為奇函數且為R上的減函數
B. ,
為偶函數且為R上的減函數
C. ,
為奇函數且為R上的增函數
D. ,
為偶函數且為R上的增函數
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com