【題目】設橢圓的方程為
(
),點
為坐標原點,點
,
的坐標分別為
,
,點
在線段
上,滿足
,直線
的斜率為
.
(1)求橢圓的方程;
(2)若斜率為的直線
交橢圓
于
,
兩點,交
軸于點
(
),問是否存在實數
使得以
為直徑的圓恒過點
?若存在,求
的值,若不存在,說出理由.
科目:高中數學 來源: 題型:
【題目】已知由自然數組成的元集合
,非空集合
,且對任意的
,都有
.
(1)當時,求所有滿足條件的集合
;
(2)當時,求所有滿足條件的集合
的元素總和;
(3)定義一個集合的“交替和”如下:按照遞減的次序重新排列該集合的元素,然后從最大數開始交替地減、加后繼的數.例如集合的交替和是
,集合
的交替和為
.當
時,求所有滿足條件的集合
的“交替和”的總和.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】唐三彩,中國古代陶瓷燒制工藝的珍品,它吸取了中國國畫、雕塑等工藝美術的特點,在中國文化中占有重要的歷史地位,在中國的陶瓷史上留下了濃墨重彩的一筆.唐三彩的生產至今已有1300多年的歷史,對唐三彩的復制和仿制工藝,至今也有百余年的歷史,某陶瓷廠在生產過程中,對仿制的100件工藝品測得其重量(單位: )數據,將數據分組如下表:
(1)在答題卡上完成頻率分布表;
(2)以表中的頻率作為概率,估計重量落在中的概率及重量小于2.45的概率是多少?
(3)統計方法中,同一組數據常用該組區間的中點值(例如區間的中點值是2.25作為代表.據此,估計這100個數據的平均值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】對稱軸為坐標軸的橢圓的焦點為
,
,
在
上.
(1)求橢圓的方程;
(2)設不過原點的直線
與橢圓
交于
,
兩點,且直線
,
,
的斜率依次成等比數列,則當
的面積為
時,求直線
的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數
(1)求函數在區間
上的值域
(2)把函數圖象所有點的上橫坐標縮短為原來的
倍,再把所得的圖象向左平移
個單位長度
,再把所得的圖象向下平移1個單位長度,得到函數
, 若函數
關于點
對稱
(i)求函數的解析式;
(ii)求函數單調遞增區間及對稱軸方程.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com