【題目】將一鐵塊高溫融化后制成一張厚度忽略不計(jì)、面積為100dm2的矩形薄鐵皮(如圖),并沿虛線(xiàn)l1,l2裁剪成A,B,C三個(gè)矩形(B,C全等),用來(lái)制成一個(gè)柱體.現(xiàn)有兩種方案:
方案①:以為母線(xiàn),將A作為圓柱的側(cè)面展開(kāi)圖,并從B,C中各裁剪出一個(gè)圓形作為圓柱的兩個(gè)底面;
方案②:以為側(cè)棱,將A作為正四棱柱的側(cè)面展開(kāi)圖,并從B,C中各裁剪出一個(gè)正方形(各邊分別與
或
垂直)作為正四棱柱的兩個(gè)底面.
(1)設(shè)B,C都是正方形,且其內(nèi)切圓恰為按方案①制成的圓柱的底面,求底面半徑;
(2)設(shè)的長(zhǎng)為
dm,則當(dāng)
為多少時(shí),能使按方案②制成的正四棱柱的體積最大?
【答案】(1) ;(2)
.
【解析】試題分析:(1)設(shè)所得圓柱的半徑為,根據(jù)矩形薄鐵皮的面積為100
,即可求得
的值;(2)設(shè)所得正四棱柱的底面邊長(zhǎng)為
,根據(jù)題意得
.方法一:表示出正四棱柱的體積
,構(gòu)造函數(shù),求得單調(diào)性,即可求得函數(shù)的最大值,從而得體積最大值及
的值;方法二:表示出
的范圍,從而得到
的范圍,再表示出正四棱柱的體積,即可求得最大值及
的值.
試題解析:(1)設(shè)所得圓柱的半徑為,則
,
解得.
(2)設(shè)所得正四棱柱的底面邊長(zhǎng)為dm,則
即
方法一:
所得正四棱柱的體積
記函數(shù)則
在
上單調(diào)遞增,在
上單調(diào)遞減.
∴當(dāng)時(shí),
.
∴當(dāng),
時(shí),
dm3.
方法二:
,從而
.
所得正四棱柱的體積.
∴當(dāng),
時(shí),
dm3.
答:(1)圓柱的底面半徑為dm;
(2)當(dāng)為
時(shí),能使按方案②制成的正四棱柱的體積最大.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下表為年至
年某百貨零售企業(yè)的線(xiàn)下銷(xiāo)售額(單位:萬(wàn)元),其中年份代碼
年份
.
年份代碼 | ||||
線(xiàn)下銷(xiāo)售額 |
(1)已知與
具有線(xiàn)性相關(guān)關(guān)系,求
關(guān)于
的線(xiàn)性回歸方程,并預(yù)測(cè)
年該百貨零售企業(yè)的線(xiàn)下銷(xiāo)售額;
(2)隨著網(wǎng)絡(luò)購(gòu)物的飛速發(fā)展,有不少顧客對(duì)該百貨零售企業(yè)的線(xiàn)下銷(xiāo)售額持續(xù)增長(zhǎng)表示懷疑,某調(diào)查平臺(tái)為了解顧客對(duì)該百貨零售企業(yè)的線(xiàn)下銷(xiāo)售額持續(xù)增長(zhǎng)的看法,隨機(jī)調(diào)查了位男顧客、
位女顧客(每位顧客從“持樂(lè)觀態(tài)度”和“持不樂(lè)觀態(tài)度”中任選一種),其中對(duì)該百貨零售企業(yè)的線(xiàn)下銷(xiāo)售額持續(xù)增長(zhǎng)持樂(lè)觀態(tài)度的男顧客有
人、女顧客有
人,能否在犯錯(cuò)誤的概率不超過(guò)
的前提下認(rèn)為對(duì)該百貨零售企業(yè)的線(xiàn)下銷(xiāo)售額持續(xù)增長(zhǎng)所持的態(tài)度與性別有關(guān)?
參考公式及數(shù)據(jù):
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若關(guān)于的方程
在區(qū)間
上有解,求實(shí)數(shù)
的取值范圍;
(2)若對(duì)
恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)為常數(shù)
(1)當(dāng)在
處取得極值時(shí),若關(guān)于x的方程
在
上恰有兩個(gè)不相等的實(shí)數(shù)根,求實(shí)數(shù)b的取值范圍.
(2)若對(duì)任意的,總存在
,使不等式
成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】三棱錐及其側(cè)視圖、俯視圖如圖所示.設(shè)
,
分別為線(xiàn)段
,
的中點(diǎn),
為線(xiàn)段
上的點(diǎn),且
.
(1)證明: 為線(xiàn)段
的中點(diǎn);
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知x0,x0+是函數(shù)f(x)=cos2(wx﹣
)﹣sin2wx(ω>0)的兩個(gè)相鄰的零點(diǎn)
(1)求的值;
(2)若對(duì)任意,都有f(x)﹣m≤0,求實(shí)數(shù)m的取值范圍.
(3)若關(guān)于的方程
在
上有兩個(gè)不同的解,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓.
(1)求圓心C的坐標(biāo)及半徑r的大小;
(2)已知不過(guò)原點(diǎn)的直線(xiàn)l與圓C相切,且在x軸、y軸上的截距相等,求直線(xiàn)l的方程;
(3)從圓外一點(diǎn)向圓引一條切線(xiàn),切點(diǎn)為M,O為坐標(biāo)原點(diǎn),且
,求點(diǎn)P的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】扎比瓦卡是2018年俄羅斯世界杯足球賽吉祥物,該吉祥物以西伯利亞平原狼為藍(lán)本.扎比瓦卡,俄語(yǔ)意為“進(jìn)球者”.某廠生產(chǎn)“扎比瓦卡”的固定成本為15000元,每生產(chǎn)一件“扎比瓦卡”需要增加投入20元,根據(jù)初步測(cè)算,每個(gè)銷(xiāo)售價(jià)格滿(mǎn)足函數(shù),其中x是“扎比瓦卡”的月產(chǎn)量(每月全部售完).
(1)將利潤(rùn)表示為月產(chǎn)量
的函數(shù);
(2)當(dāng)月產(chǎn)量為何值時(shí),該廠所獲利潤(rùn)最大?最大利潤(rùn)是多少?(總收益=總成本+利潤(rùn)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】四棱錐中,底面
是邊長(zhǎng)為
的菱形,側(cè)面
底面
,
,
,
是
中點(diǎn),點(diǎn)
在側(cè)棱
上.
(Ⅰ)求證: ;
(Ⅱ)若是
中點(diǎn),求二面角
的余弦值;
(Ⅲ)是否存在,使
平面
?若存在,求出
的值;若不存在,說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com